
 

3 V May 2015



www.ijraset.com                                                                                                            Volume 3 Issue V, May 2015 
IC Value: 13.98                                                                                                              ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET 2015: All Rights are Reserved 
415 

Multiplier Using Canonical Signed Digit Code 
Vishwanath B.R.1 Theerthesha.T.S  2 

1,2Assistant Professor, Dept. of ECE, RIT Hassan (India)

Abstract--Real-time implementation of many digital signal processing (DSP) algorithms and multimedia applications are limited 
by the available speed, energy efficiency, and area requirement of multiplication. This is the major drawback in handheld 
multimedia devices due to the limited battery lifetimes. A novel canonical signed digit (CSD) iterative multiplier structure in 
which the conversion from 2's complement to CSD representation is implicitly implemented in real-time.  

I. INTRODUCTION               
 Digital signal and image processing applications require a large number of floating point multiplications. For such applications fast 
multiplication techniques are required to improve the overall system speed. Fast multiplication can be achieved by reducing number 
of partial products. Canonical signed digit is a recoding technique, which recodes a number with minimum number of non-zero 
digits. As the number of partial products depends on the number of non-zero digits, by using Canonical recoding, the number of 
non-zero digits will be reduced, thereby reducing the number of partial products. Here floating point multiplication using canonical 
signed digit is proposed and is compared with Conventional multiplication technique. The design will be implemented in Verilog 
and simulated using Xilinx 9.2 ISE. Array multipliers and parallel multipliers are used widely when high speed multiplication is 
required. However, in addition to requiring large area, array multipliers usually do not seek to optimize energy efficiency though 
exploitation of the specific data dependent patterns of digits that occur in the multiplier and multiplicand; typical array multipliers 
are inherently energy inefficient in this regard. CSD representations have proven to be useful in implementing multipliers with 
reduced complexity, because the cost of multiplication is a direct function of the number of nonzero bits in the multiplier. For an n-
bit 2's complement multiplier the number of non-zero bits in its CSD representation never exceeds n/2 and can be reduced to n/3 on 
average, as the word length of the multiplier grows. Therefore,by incorporating the CSD number representation into multiplier, the 
number of nonzero partial products were reduced, which in turn increases the multiplier throughput and energy efficiency.   

II. CSD MULTIPLIER IMPLEMENTATION 

A. Canonic Sign Digit (CSD) 
Canonical Signed Digit (CSD) is a type of number representation. The important characteristics of the CSD presentation are: 

CSD presentation of a number consists of numbers 0, 1 and -1.  
The CSD presentation of a number is unique. 
The number of nonzero digits is minimal. 
There cannot be two consecutive non-zero digits  

B. Conversion from Binary to CSD 

 
Figure 1:- Conversion from binary to CSD 

Example 1 
A number 287, which is 1 0001 1111 in binary representation. (256 + 16 + 8 + 4 + 2 + 1 = 287)=1 0001 1111 



www.ijraset.com                                                                                                            Volume 3 Issue V, May 2015 
IC Value: 13.98                                                                                                              ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET 2015: All Rights are Reserved 
416 

Starting from the right (LSB), if there are more than one non-zero elements (1 or -1) in a row, take all of them, plus the next zero. (if 
there is not zero at the left side of the MSB, create one there). We see that the first part of this number is 01 1111. Add 1 to the 
number i.e. changes the 0 to 1, and all the 1's to 0's, and force the rightmost digit to be -1. 

01 1111=>10 000-1 
The number is still the same: 16 + 8 + 4 + 2 + 1 = 31 = 32 + (-1). Now the number looks like this 
1 0010 000-1  
Since there are no more consecutive non-zero digits, the conversion is complete. Thus, the CSD presentation for the number 287 is 1 
0010 000-1, which is 256 + 31 - 1. 
Example 2 
 Number 345. In binary, it is 
1 0101 1001 
Find the first place (starting from right), where there are more than one non-zero numbers in a row. Take also the next zero. Add one 
to it, and force the rightmost digit to be -1. 
1 0110 -1001 
Take the 011, and add one to it (get 100), and force the last digit to be -1. (get 10-1). Now the number looks like this 
1 10-10 -1001 
Do the same thing again. This time, imagine a zero in the left side of the MSB. 
10-10-10-1001 

Table1:- Conversion of binary number to CSD digit representation 
Yi+2  Yi+1 Yi Xi+3 Xi+2 Xi+1 Xi 

0 0 0 0 0 0 0 
0 0 1 0 0 0 1 
0 1 0 0 0 1 0 
0 1 1 0 1 0 -1 
1 0 0 0 1 0 0 
1 0 1 0 1 0 1 
1 1 0 1 0 -1 0 
1 1 1 1 0 0 -1 

Circuit module has been carried out via Table 1, and shown in below Figure. In this architecture yi, yi+1, yi+2 are the present state 
inputs, and the corresponding outputs are xi, xi+1, xi+2, xi+3. Si_xi,Si_xi+1, Si_xi+2,Si_xi+3 are representing the corresponding 
sign bits of the outputs. 

 

 
Figure.2:-CSD RECODER CIRCUIT 

C. Multiplication Algorithm Using CSDC 
Convert the multiplier into CSDC 
Generate N X N bits partial products 
Add the partial products 
Convert addition results into 2’s complement format 
 



www.ijraset.com                                                                                                            Volume 3 Issue V, May 2015 
IC Value: 13.98                                                                                                              ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET 2015: All Rights are Reserved 
417 

TABLE 2:- CSD Multiplication Technique; 

 

 

Figure.3:- CSD Multiplication logic 

D. CSD Addition/Subtraction 
The canonical sign digit adder/subtractor (CSD adder/subtractor) performs carry propagation free addition. Carry propagation free 
addition has been performed by determining the intermediate carry and intermediate sum digits. Carry propagation free addition has 
been performed in three steps:  
Check the type of operation (addition). For addition, the sign of the individual bits remains unchanged. For subtraction, the signs of 
the individual nonzero bits are inverted. 
Determine the intermediate carry, Ci  (_1; 0; 1), and intermediate sum digits, Si  (_1; 0; 1), satisfying the condition, xi+yi = zi+Ci-1, 
where xi+1 and yi+1 are the augends and addend digits, respectively. 
Obtain the sum digits, Zi  (-1; 0; 1), at each position by adding the intermediate sum digits, Si and Ci, from the next lower order 
positions. The truth table implementation from step (ii) is shown in Table 3.1. Boolean expressions have been formed from the 
above steps and shown in Eqs. (3.1)- (3.6). Here, 'zi' and 'ci-1' represent the intermediate sum and the intermediate carry. 'signxi' and 
'signyi' represent the sign magnitude of 'xi' and 'yi', respectively. 'Signci-1' and 'signzi' are the sign magnitude of the intermediate 
carry and intermediate sum, respectively. 'sumi' and 'signsumi' are sum and its sign magnitude, respectively. A canonical sign digit 
adder circuit has been used here for both addition and subtraction. To implement the subtractor, a small hardware was added with 
the adder circuit. Hardware implementation of the adder/subtractor is shown in Figure 
3.6. The architecture for the CSD adder/subtractor can be decomposed into two sections, viz, addition/ subtraction, through CSDC 
and CSD, to binary conversion. 

 
Table 3. Truth table for determining the intermediate sum and intermediate carry. 

 



www.ijraset.com                                                                                                            Volume 3 Issue V, May 2015 
IC Value: 13.98                                                                                                              ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET 2015: All Rights are Reserved 
418 

Augend 
digits 
(xi) 

 

Addend 
digits 
(yi) 

 

Digits of the previous 
higher order posions 

(x1+1; yi+1) 
 

Intermediate 
carry 
(Ci-1) 

 

Intermediate 
sum 
(zi) 

 
0 0 ------------------------- 0 0 
0 1 both are non-negative 1 -1 
1 0 Otherwise 1 0 
1 1 ------------------------ 0 1 
0 -1 both are non-negative 0 -1 
-1 0 Otherwise -1 1 
1 -1 ------------------------- 0 0 
-1 1 ------------------------- 0 0 
-1 -1 ------------------------- -1 0 

 
Sign digit adder circuit has been used here for both addition and subtraction. To implement the subtractor, a small hardware was 
added with the adder circuit. Hardware implementation of the adder/subtractor is shown in Figure 3.6. The architecture for the CSD 
adder/subtractor can be decomposed into two sections, viz, addition/ subtraction, through CSDC and CSD, to binary conversion. 
Boolean expressions are to be formed from the above steps, as shown in Eqs. (3.1)-(3.6). Here, 'zi' and 'ci-1' represent the 
intermediate sum and intermediate carry. 'signxi' and 'signyi' represent the sign magnitude of 'xi' and 'yi' respectively. 'signci-1' and 
'signzi' is the sign magnitudes of intermediate carry and intermediate sum, respectively, and 'sumi' and 'signsumi' are the sum and its 
sign magnitude, respectively. The second segment, consisting of a half adder and a sub-tractor, is used for the conversion of CSD to 
a binary number system. A Boolean expression is shown here only for addition.  

 

Figure 4:-CSD adder/subtractor. 

 

Figure 5:-Flowchart diagram of improved multiplication algorithm using CSD. 



www.ijraset.com                                                                                                            Volume 3 Issue V, May 2015 
IC Value: 13.98                                                                                                              ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET 2015: All Rights are Reserved 
419 

 

Figure 6:-CSD multiplier logic diagram. 

E. Conventional Multiplication Example 

Example: 14 multiplied with 15 should give 210. 

Multiplicand => 1110 

Multiplier=> 1111 

1 1 1 0 X 1 1 1 1 

                              1 1 1 0 

                            1 1 1 0 

                         1 1 1 0 

                         1 1 1 0 

                    11010010 

F. Multiplication using CSDC 

Example: - 14  X  15 = 210 

Multiplicand=> 14=1110  

Multiplier=> 15=1111 

Convert multiplier into CSD format i,e 1111=>1000-1 and multiply it with multiplicand.   

1110 X 1000-1 

-1-1-10 

1 1 1 1 



www.ijraset.com                                                                                                            Volume 3 Issue V, May 2015 
IC Value: 13.98                                                                                                              ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET 2015: All Rights are Reserved 
420 

10-1010010 

III. RESULTS AND CONCLUSION 
The implementation methodology ensures stage reduction, leading to substantial reduction of the propagation delay and power. A 
high speed multiplier, using a high accuracy CSD recoder conversion methodology, was designed for practical digital signal 
processors. Multiplication of higher order bits requires a large number of hardware components, due to the generation and 
processing of huge partial products. In these schemes, partial product handling was avoided by using CSDC, where multiplication 
reduces to direct addition. The improvement in speed, by avoidance of carry propagation, was achieved through Canonical Signed 
Digit Code (CSDC) implementation. The corresponding improvement, in terms of power, was found to be _ 54%, _ 66%, and _ 
61%, respectively, with reference to the above conventional methodologies.  

REFERENCES 

[1] J. Kang and J. Gaudiot, "A simple high-speed multiplier design," IEEE Trans. Comput., vol. 55, No. 10, pp. 1253-1258, Oct. 2006. 
[2] A. Efthymiou, W. Suntiamorntut, J. Garside, and L.E.M. Brackenbury, "An asynchronous, iterative implementation of the original Booth multiplication 
algorithm," in Proc. 10th IEEE Int'l. Symp. Asynchronous Circuits, and Syst., Crete, Greece, Apr. 19-23, 2004, pp. 207-2 15. 
[3] J. Hensley, A. Lastra, and M. Singh, "An area- and energy-efficient asynchronous Booth multiplier for mobile devices," in Proc. IEEE Int'l. Conf Comput. 
Design, San Jose, CA, Oct. 11-13, 2004, pp. 18-25. 
[4] M.A. Soderstrand, "CSD multipliers for FPGA DSP applications," in Proc. IEEE Int'l. Symp. C 
ircuits, Syst., vol. 5, Bangkok, Thailand, May 25-28, 2003, pp. V-469 - V-472. 
[5] C.-L. Chen, K.-Y. Khoo, and A.N. Willson, Jr., "A simplified signed powers-of-two conversion for multiplierless adaptive filters," in Proc. IEEE Int'l. Symp. 
Circuits, Sys., vol. 2, Atlanta, GA, May 12-15, 1996, pp. 364-367. 
[6] G.K. Ma and F.J. Taylor, "Multiplier policies for digital signal processing," IEEEASSP Mag., vol. 7, no. 1, pp. 6-20, Jan. 1990. 
[7] G.A. Ruiz and M.A. Manzano, "Self-timed multiplier based on canonical signed-digit recoding," IEE Proc.: Circuits, Devices, Syst., vol. 148, no. 5, pp. 235-241, 
Oct. 2001. 
[8] S.-M. Kim, J.-G. Chung, and K.K. Parhi, "Design of low error CSD fixed-width multiplier," in Proc. 2002 IEEE Int'l. Symp. Circuits, Syst., vol. 1, Scottsdale, 
AZ, May 26-29, 2002, pp. 1-69 - 1-72. 
[9] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, Oxford Press, London, 1999. 
 

 
 

 



 


