Study to Linear Topological Space

K M Bharti ${ }^{1}$, Prof. R. B. Singh ${ }^{2}$
${ }^{1}$ Master of Science in Mathematics Monad University, Hapur
${ }^{2}$ Department of mathematics

Abstract

In this theis several topies from Topology linear Algebra and Real Analysis are com-bined in the study of linear topological spaces. We begin with a brief look at linear spaces before moving on to study some basic properties of this structure of linear topological basis. Then we turn our attention to linear spaces with a metric topology. In particular we consider problems involving normed liner spaces bounded linear transformation and Hilbert spaces

Keywords: topology, linear algebra

I. INTRODUCTION

P. Thangavelu and Nithanantha Jothi introduced the concept of binary topology in (4). It is a single topological structure that carrier the subjects of a set x as well as the subsets of another set x for studying the information about the orderded pair (A.B.) of subset of x and y . A linear topological space endowed with a topology such that the vector addition and sclar multiplication are both continuos the theory of linear topological spaces provide a remarkable economy in discussion of many classical mathematical problems. We introduce the concept of binary topology to linear section 2 . We define the binary linear jtopology. Section 3 Space (BLTS) We prove that the binary product of two linear topological spcae is a BLTS. Also we discuss to concept of locally convese BLTS and locally bounded BLTS and prove some of their properties. In section 4 we define binary metric and binary normal. The main result of this section is that the binary product preserve metrizablity and normbility. Section 5 deals with the construction of aBLTS using a family of binary seminorms.

II. PRELIMINARIES

1) Definition: Let x and y be any two non-empty and $\mathrm{d}(\mathrm{x})$ and $\mathrm{g}(\mathrm{y})$ be their power sets respectively. A binary topology from x to y is a binary structure M Íd (x) $\mathrm{xd}(\mathrm{y}$) that satisties the following arioms (f, f) and (x, y) ÎM
If $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ ÎM, then (A_{1} Ç A_{2}, B_{1} Ç B_{2}) ÎM.
If $\left\{\left(A_{a}, B_{a}\right): a\right.$ ÎD $\}$ is a family of members of M; then $\left(U_{d}\right.$ ÎDA A_{d}, U_{a} ÎDB $\left.a\right)$ ÎM.
If M is a binary topology from x to y then the triplet ($\mathrm{x}, \mathrm{y}, \mathrm{m}$) is called a binary topology space and the members of M are called binary points of binary open sets. (C,D) is called binary colsed if ($x|c, y| D$) is binary open. The elements of $x, x y$ are called the binary points of the binary topological space ($\mathrm{x}, \mathrm{y}, \mathrm{m}$) yet ($\mathrm{x}, \mathrm{y}, \mathrm{m}$) be a binary topological space and let (x, y) $\mathrm{I} \mathrm{x} x \mathrm{x}$ The binary open set (A, B) is called a binary neighborhood of (x, y) if x Î A and ÎB. If $x=y$ then M is called a binary topology on x and we write (x, M) as a binary space.
2) Proposition: Let ($\mathrm{x}, \mathrm{y}, \mathrm{m}$) be a binary topological space. Then
(1) $\quad T(M)=\{A$ Í $x:(A, B)$ ÎM for some B Í Y $\}$ is a topology on x.
$\mathrm{T} 1(\mathrm{M})=\{\mathrm{BÍ} \mathrm{Y}:(\mathrm{A}, \mathrm{B}) \mathrm{ÎM}$ for some A Í x$\}$ is a topology on y .

III. BINARY LINEAR TOPOLOGY

1) Definition: A binary topology between two vector space is said to be binary linear if the two operation are continuous i. e, if V_{1}, and V_{2} are vector space over the some field k and for every neighbourhoods U of ($\left.x 1+x 2, y 1+y 2\right) \hat{I} V_{1} x V_{2}$.' two neighbourthoods U_{1} and U_{2} of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ respectively that $U_{1}+U_{2} I ́ U$. Similarly for every neighbourthood W of (1 x , ly) $\mathrm{v}_{1} \times \mathrm{v}_{2}$ there exsits a neighbourthood w of (x, y) such that lw í w. If M is a binary linary topology between two vector space V_{1} and V_{2} then triplet $\left(V_{1}, V_{2}, M\right)$ is called a binary linear topological space (BLTS).
2) Proposition: If $\left(\mathrm{V}_{1} \mathrm{~T}_{1}\right)$ and $\left.\mathrm{V}_{2}, \mathrm{~T}_{2}\right)$ are two linear topologica space then $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~T}_{1} \times \mathrm{T}_{2}\right)$ is a called the binary linear topological space.
a) Proof: By proposition 2. 3, $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~T}_{1} \times \mathrm{T}_{2}\right)$ is a binary topological space. If remains to show that $\mathrm{T}_{2} \mathrm{x} \mathrm{T}_{2}$ is a binary linear topology let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \hat{I} V 1 \times V 2$ and $\left(A_{1}, A_{2}\right)$ be a neighbourhood of $\left[\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right]$. Then $x_{1}+y_{1} \hat{I} A_{1}$ and $x_{2}+y_{2} \hat{I}$ A_{2}. Since $A_{1} \hat{I} T_{1} \hat{I} T_{1}$ and T_{2}, and T_{1} and T_{2} are linear topological there exist neighhbourthood B_{1} and C_{1} of x_{1} and y_{1} respectively in T_{1} such that $B_{1}+C_{1} \hat{I} A_{1}$ and neighbourhood B_{2} and C_{2} of x_{2} and y_{2} respectively in T_{2} such that $B_{2}+C_{2}$ Í A_{2}. Then in $T_{1} \times T_{2}\left(B_{1}, B_{2}\right)$ is a neighbourhood $\left(B_{1}\right.$, that $\left(B_{1}, B_{2}\right)+\left(C_{1}, C_{2}\right)=T_{1} \times T_{2}\left(B_{1}, B_{2}\right)$ Now Let $\left(A_{1}, A_{2}\right)$ be a neighborhood of $1\left(x_{1}, x_{2}\right) T_{1} \times T_{2}$ Then A1 is a neighborhood of x_{1} in T_{1} and $T_{2} A_{2}$ is a x_{2} in T_{2}. So there exists two B_{1} and B_{2} off x_{1} and x_{2} respectively such that $1 B_{1}$ Í A_{1} and B_{2} Í A_{2}. This implies that $\left(B_{1}, B_{2}\right)$ is a neighbourhood of $\left(x_{1}, x_{2}\right)$ such that $l\left(B_{1}, B_{2}\right)$ Í $\left(A_{1}\right.$, A_{2}). Thus $T_{1} \times T_{2}$ is a binary linear topology.
3) Proposition: If $\left(V_{1} . V_{2}, M\right)$ is a BLTS, then $a(M)=\left\{A\right.$ Í $V_{1}:(A, B)$ Î M for some B

Í $\left.V_{2}\right\}$ is a linear topology on V_{1} and a $(M)=\left\{B\right.$ Í $\left.V_{2}\right)(A, B) \hat{I} M$ for come A Í $\left.V_{1}\right\}$ is a linear topology on V_{2}.
a) Proof: By proposition a (M) are both topologies in V_{1} a V_{2} respectively. Let $x_{1}, y_{1} \hat{I} \quad V_{1}$ and $A \hat{I} T(M)$ contains $x,+y_{1}$. Then for some $x_{2}, y_{2} \hat{I} v_{2}$ there exsists B Í V_{2} such that $\left(x_{1}++y_{1}, x_{2}+y_{2}\right) \hat{I}(A, B)$ Where (A, B) $\hat{I} M$, since M is a binary linear topology, there exsist $\left(E_{1}, E_{2}\right)$ and $\left.F_{1}, F_{2}\right)$ in M such that $\left(x_{1}, x_{2}\right)\left(e_{1}, e_{2}\right),\left(y_{1}, y_{2}\right) \hat{I}\left(f_{1}, f_{2}\right)$ and $\left(E_{1}, E_{2}\right)+\left(F_{1}+F_{2}\right) \hat{I}(A, B)$. x, $\hat{I} E_{1}, Y_{1} \hat{I}$ F1and $\left(E_{1}, E_{2}\right)$ by the definition of binary sets. Also E_{1} and $F_{1} \hat{I}_{1}(M)$ by the construction of (T). Similary for lxÎA. Where for lxÎA. Where A $\hat{I} T(M)$ we can find also a linear of x say U such that ÎUÍA. Thus ${ }_{T}(M)$ is linear topology in the same say we can prove that (M) topology.
4) Definition: A local base of a binary linear topology $\left(V_{1}, V_{2}, M\right)$ is the base Consists of the neighborhood of a binary points (x, y)
5) Definition: A set $(A, B) \hat{I} d\left(V_{1}\right) \times d\left(V_{2}\right)$ is convese if for all pairs $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \hat{I}(A, B) 1\left(x_{1}, x_{2}\right)+(1-1)\left(y_{1}, y_{2}\right) \hat{I}(A, B)$ II (0, 1).
6) Definition: A binary topology is called locally conver if there exsist a local base at $(0,0)$ whose members are conver.
7) Definition: A BLTS is locally bounded of $(0,0)$ as a bounded neighbourhood, i, e, a neighbourhood (E, F) such that (N, M) ÎNo. the set of neighbourhood of $(0,0)$ there exists S Î R such that $t>S$, (E, F) Ít (N, M). Let $\left(V_{1}, V_{2}, M\right)$ be a BLTS. Then for every $\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)$ Î No. ' balanced and symmetic sets $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ Î No such that $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{t}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \mathrm{c}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)$.
a) Proof: If $\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)$ ÎNo then w_{1} and w_{2} are neighbourhood of O in ($\mathrm{v}_{1}, \mathrm{~T}(\mathrm{M})$ and $\left(\mathrm{V}_{2}, \mathrm{~T}\right.$ respectively by the property of linear topologices there exists symmetrie balanced neighbourhood of $0, x_{1}, x_{2} \hat{I} T(M)$ and $y 1+y_{2} C W_{2}$ Now, x_{1}, y_{1} are P aÎR with $|a| £$ 1 , $\mathrm{ax}_{1} \mathrm{cx}_{1}$ and $\mathrm{y}_{1} \mathrm{cy}_{1}$.
So $\mathrm{a}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\left(\mathrm{a} \mathrm{x}_{1}, \mathrm{y}_{1}\right) \mathrm{C}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ thus $\left(\mathrm{x}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are balanced by the symmetry of x 1 and y 1 we get $\mathrm{x} 1=-\mathrm{x}_{1}, \mathrm{y}_{1}=-\mathrm{y}_{1} \quad \mathrm{P}\left(\mathrm{x}_{1}\right.$, $\left.y_{1}\right)=\left(-x_{1}, y_{1}\right)$ thus $\left(x_{1}, y_{1}\right)$ is symmetric and similarly $\left(x_{2}, y_{2}\right)$ is also symmetric. $\left(\mathrm{x}_{1} \mathrm{y}_{1}\right)+\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\left(\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{y} 1+\mathrm{y}_{2}\right) \mathrm{C}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)$.
8) Proposition: Let V_{1} and V_{2} be real vector space and U_{1} be a convex set in V_{1} and U_{1} be a convex set in V_{2} then $\left(U_{1}, U_{2}\right)$ is convex $d\left(\mathrm{~V}_{1}\right) \times \mathrm{d}\left(\mathrm{V}_{2}\right)$.
a) Proof: Let $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \hat{\mathrm{I}}\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right)$ for $\mathrm{i}=1,2$ then $\mathrm{x} 1 \hat{\mathrm{I}} \mathrm{U}_{1} \hat{\mathrm{I}} \mathrm{U}_{2}$ for $\mathrm{i}=1,2 \mathrm{P} \mathrm{l}_{1}+(1-1) \mathrm{x}_{2} \hat{\mathrm{I}}$

U1 for $0 £>$ Í 1 . So $\left(\mathrm{lx}_{1}+\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+(1-1) \mathrm{y}_{2}\right)\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right)$. Consider $\mathrm{l}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+(1-1)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
$\left.\left.=\left(\mathrm{lx}_{1}, \mathrm{l}_{1}\right)+(1-1) \mathrm{y}_{2}\right) \neg \mathrm{U}_{1}, \mathrm{U}_{2}\right)$ for $) £>\mathrm{I} 1$. Thus $\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right)$ is convex.
9) Corollary: If $\left(\mathrm{V}_{1}, \mathrm{~T}_{1}\right)$ and $\left(\mathrm{V}_{2}, \mathrm{~T}_{2}\right)$ are both locally convex topological vector spaces then their binary product $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~T}_{1} \times \mathrm{T}_{2}\right)$ is locally convex BLTS.
10) Proposition: Let U_{1} and U_{2} be bounded sets in two uleal vecotor spaces V_{1} and V_{2} respectively then bounded.
a) Proof: Since U_{1} is bounded for every neighbourhood e1Î No. (V_{1}). 's1 ÎR such that $t>E_{2}$ ÎNo. (V_{2}), ' s_{2} ÎR such that $t>S 1$, V1 C tE1. Similarly for every neighbourhood $E_{2} I \hat{N} N$. $\left(V_{2}\right)$, 's2 ÎR such that $t>S_{2}, U_{2} C$ t E_{2}. Let $T_{1} \hat{I} R$ correspound to E and $T 2 \hat{I}$ to f then $t>t_{1}, U_{1} C t E$ and $t>t_{2}$. $U_{2} c t f$. So $t>S$, where $S=\max \left(t_{1}, t_{2}\right), U 1 c t E$ and $U_{2} c t f$ i.e $\left(U_{1} U_{2}\right) I t(E, F), t>S$. Thus $\left(U_{1}\right.$, U_{2}) is bounded.
11) Corollary : If $\left(\mathrm{V}_{1} \mathrm{~T}_{1}\right)$ and $\left(\mathrm{V}_{2} \mathrm{~T}_{2}\right)$ are both locally bounded topological vector spaces, then their binary product $\left(\mathrm{V}_{1}, \mathrm{~V}_{2} \mathrm{~T} 1 \times \mathrm{T}_{2}\right)$ is a locally bounded BLTS.
12) Proposition: Let $\left(\mathrm{V}_{1}, \mathrm{~T}_{1}\right)$ be a topological vector space and V_{2} be another vector space such that map $\mathrm{T}: \mathrm{V}_{1} ® \mathrm{~V}_{2}$ is an isomo rphism. Then $T_{2}=\left\{T(A): A \hat{I T}_{1}\right\}$ is a linear topology in V_{2} and hence $T_{1} \times T_{2}$ is a binary linear topology from V_{1} to $V 2$.
a) Proof: Since T is an isomorphism, $T(f)=f$ and $T\left(V_{1}\right)=V_{2}$ and So $f V_{2}$ and $\operatorname{Sof} V_{2} \hat{I} T_{2}$. Let A. $B \hat{I} T_{2}$. Then $A=T(A)$ and $B=$ $T(B)$ for some A^{\prime} and B^{\prime} Î T_{1}. So A^{\prime} Ç B^{\prime} Î $T_{1}\left(A^{\prime} C ̧ B^{\prime}\right) ~ I ̂ ~ T_{2} T\left(A^{\prime} C ̧ B^{\prime}\right)=T\left(A^{\prime}\right) C ̧\left(B^{\prime}\right)=A$ Ç B Thus. A Ç B Î Th. Now Let $\{A a\} \ldots T_{2}$ for some index set. T then exists $(B a) \ldots{ }_{T} T_{1}$ Such that $A a=T(B a)$ for each aeT Then $U \ldots{ }_{T}$ ÎT ${ }_{2}$ for each aeT. So $\mathrm{x}_{1}+\mathrm{y}_{1} \neg \mathrm{~A}$ and $\mathrm{U} .{ }_{\mathrm{T}} \mathrm{Aa}=\mathrm{U} .{ }_{\mathrm{T}} \mathrm{T}(\mathrm{Ba})$. Then $\mathrm{B}_{1}, \mathrm{~B}_{2} \hat{I} \mathrm{~T}_{2}$ and $\mathrm{x}_{1} \hat{\mathrm{I}} \mathrm{A}_{1} \mathrm{P} \mathrm{x}_{2}=\mathrm{T}\left(\mathrm{x}_{1}\right) \hat{I} T\left(\mathrm{~A}_{1}\right)=\mathrm{B}_{1} \mathrm{y}_{1}$.

IV. BINARY MERITABLE AND BINARY NORMABLE BLTS

1) Definition: A binary metric on two sets V_{1} and V_{2} is a map d: $\left(\mathrm{V}_{1} \times \mathrm{V}_{2}\right) \times\left(\mathrm{V}_{1} \times \mathrm{V}_{2}\right){ }^{\circledR} \mathrm{R}$ satisfying the following axioms : If $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right) \hat{I} V_{1} \times V_{2}$ then.
df $\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right),\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]^{3} 0 \mathrm{~d}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right),\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]=\mathrm{d}\left[\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right]$ and.
$d\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right] £ d\left[\left(x_{1}, x_{2}\right),\left(z_{1}, z_{2}\right)\right]+d\left[\left(z_{1}, z_{2}\right),\left(y_{1}, y_{2}\right)\right]$ for every $\left(z_{1}, z_{2}\right) \hat{I} v_{1} \times v_{2}$
$d\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=0 \hat{U} x_{1}=x_{2}$ and $y_{1}=y_{2}$.
2) Definition: Let $\left(v_{1}, v_{2}, M\right)$ be a BLTS. A binary topology M is metrizable with a binary metric d if for any (x, y) in some binary open set (A, B) Î M, ' g > 0 Such that B, (x, y)
CB where pi is the projection map to V_{1} for $\mathrm{i}=1,2$.
3) Proposition: If $\left(\mathrm{V}_{1}, \mathrm{~T}_{1}\right)$ and $\left(\mathrm{V}_{2}, \mathrm{~T}_{2}\right)$ are two linear topological space such that T_{1} and T_{2} are both metrizable with metrics d_{1} and d_{2} respectively then $T_{1} \times T_{2}$ are both metrizable with metrics d_{1} and d_{2} respectively then $T_{1} \times T_{2}$ is binary metrizable.
a) Prof: Consider the map d: $\left(\mathrm{V}_{1} \times \mathrm{V}_{2}\right) \times\left(\mathrm{V}_{1} \times \mathrm{V}_{2}\right) \mathrm{R}$ defined by

$$
\mathrm{d}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+\mathrm{d}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)
$$

$\mathrm{d}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right),\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right)=\quad \longrightarrow,\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right),\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \neg\left(\mathrm{v}_{1} \times \mathrm{v}_{2}\right)$

2
If $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \hat{I} v_{1} \times v_{2}$ then

$$
\mathrm{d}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]=\frac{\mathrm{d}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+\mathrm{d}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)}{2} \quad{ }^{3} 0 \text {, since } \mathrm{d}_{1}
$$

$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{d}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are both non-negative.

$$
\mathrm{d}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+\mathrm{d}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \quad 0 \hat{\mathrm{U}} \mathrm{~d}_{1}\left(\mathrm{x}_{1} \mathrm{y}_{1}\right)=0 \text { and } \mathrm{d}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=0
$$

(2) $d\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=$

This happens if and only $x 1=x_{2}$ and $y_{1}=y_{2}$ i. e. when $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$
(3) $d\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{d}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]=$

$$
\frac{\mathrm{d}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+\mathrm{d}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)}{2}=\frac{\mathrm{d}_{1}\left(\mathrm{y}_{1}+\mathrm{y}_{1}\right)+\mathrm{d}_{2}}{2}
$$

$\left.\left.\left(y_{2}, x_{2}\right)=d\left(y_{1}, y_{2}\right), x_{1} x_{2}\right)\right)$ and if $\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) \hat{I} \mathrm{v}_{1} \times \mathrm{v}_{2}$

$$
\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+\mathrm{d}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \quad £\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, \mathrm{z}_{1}\right)+\mathrm{d}_{1}\right.
$$

(4) $d\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=$
$\frac{=}{2}$
$\left.\left(\mathrm{z}_{1}, \mathrm{y}_{1}\right)\right]+\left[\mathrm{d}_{2}\left(\mathrm{x}_{2}, \mathrm{z}_{2}\right)+\mathrm{d}_{2}\left(\mathrm{z}_{2}, \mathrm{y}_{2}\right)\right]^{2}=\quad \frac{\mathrm{d}_{1}\left(\mathrm{x}_{1}, \mathrm{z}_{1}\right)+\mathrm{d}_{2}\left(\mathrm{x}_{2}, \mathrm{z}_{2}\right)}{2}+\frac{\mathrm{d}_{1}\left(\mathrm{z}_{1}, \mathrm{y}_{1}\right)+}{2}$
$\mathrm{d}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\mathrm{d}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right),\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)\right]+\mathrm{d}\left[\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right),\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]$.

Thus dis a binary metric let (A, B) Î $\mathrm{T}_{1} \times \mathrm{T}_{2}$ and (x, y) $\hat{\mathrm{I}}(\mathrm{A}, \mathrm{B})$ Then x Î A Î T_{1} and y Î B Î T_{2} since T_{1} and T_{2} are metrizable. ' $G_{1}, G_{2}>0$ with respect to d_{1} and d_{2} respectively such that Br_{1} (x) CA and Br_{2} (y) c B. i. e if $d_{1}\left(x_{1} x_{1}\right)<n$ then $x_{1} \hat{I} B r_{1}(x)$ and if $d_{2}\left(y_{1} y_{1}\right)<r_{2}$ then $y_{1} \hat{I B r}_{2}(y) P(x, y,) \neg(A, B)$ let $r=\min \left(r_{1}, r_{2}\right)$ and (u, v) $\hat{I} B 6 / 2(x$, y) then $(x, y),(u, v)<r / 2$, i, e, d1 $\left(x_{1} y\right)+d_{2}(y, v)<r / 2$. So $d_{1}(x, u)+d_{2}(y, v)<r / 2$, i, e $d_{1} d_{1}\left(x_{1}, u_{1}\right)+d_{2}(y, v)$ $\overline{2}<r / 2$. Sod1 $(x, u)+d_{2}(y, v)<r<r_{1}$ and $d(y, v)<r<r_{2}$ Hence u Î B_{1}
(x) c and ut Br_{2} (y) CB. Thus (u, v) $\hat{\mathrm{I}}$ (A, B)showing that $\mathrm{Br} / 2$ (xy) C (A, B).
4) Definition: A binary seminorm on two vector space V_{1} and V_{2} is a map $\|\cdot\|: V_{1} \times V_{2} \circledR$ Rsuch that for each $\left(x_{1} x_{2}\right)\left(y_{1} y_{2}\right) V_{1} \times$ V_{2}.
$\left\|\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right\|^{3} 0$
$\left\|\mathrm{a}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right\|=|\mathrm{a}|\left\|\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right\|$
$\left\|\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)+\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\| £\left\|\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right\|+\left\|\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\|$.
A binary seminarm becomes a binary norm if the following condition holds.
$\left\|\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right\|=0 \hat{\mathrm{U}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=(0,0)$
5) Proposition: If $\left(\mathrm{V}_{1}, \mathrm{~T}_{1}\right)$ and $\left(\mathrm{V}_{2}, \mathrm{~T}_{2}\right)$ are both normable topological vector space, then their ubinary product is binary normable.
a) Proof: Let $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ be the norms corres ponding to t_{1} and t_{2} respectively. Then we get two metrics d_{1} and d_{2} defind by d_{1} $\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\left(=\left\|\left(x_{1}, x_{2}\right)-\left(y_{1}, y_{2}\right)\right\| i, i=1,2\right.\right.\right.$ and $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right) v_{1} \times v_{2}$ with which t_{1} and t_{2} are metrizable respectively. So by proposition $T_{1} \times T_{2}$ is metrizable with which T_{1} and $d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right) V\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\left(v_{1} \times v_{2}\right)$ Hence the binary norm $\|$. defind by $\|\left(x_{1}, x_{2}\right) \hat{I} v_{1} \times v_{2}$ corresponds to the topology $T_{1} \times T_{2}$ but
this norm is same as

$$
\frac{\|\cdot\|_{1}+\|\cdot\|_{2}}{2}
$$

$\|\cdot\|_{1}+\|\cdot\|_{2} \quad$ since $\left\|\left(\mathrm{x}_{1} \cdot \mathrm{x}_{2}\right)\right\|=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)(0,0)=$
$\mathrm{d}_{1}\left(\mathrm{x}_{1}, 0\right)+\mathrm{d}_{2}\left(\mathrm{x}_{2}, 0\right)$

6) Lemma: Let V_{1} and V_{2} be two vector space and P be a binary seminorm on $\mathrm{V}_{1} \times \mathrm{V}_{2}$

Then there exists two seminorm P_{1} and P_{2} on V_{1} and V_{2} respectively.
a) Proof: Let $\mathrm{P}_{1}: \mathrm{V}_{1}{ }^{\circledR} \mathrm{R}$ be defined by $\mathrm{P}_{1}(\mathrm{x})=\operatorname{infy}\left\{\mathrm{P}(\mathrm{x}, \mathrm{y}):\right.$ y $\left.\hat{\mathrm{I}} \mathrm{V}_{2}\right\}$ since $\mathrm{P}(\mathrm{x}, \mathrm{y})^{3} 0,(\mathrm{x}, \mathrm{y}) \neg \mathrm{V}_{1} \times \mathrm{V}_{2}, \mathrm{P} 1(\mathrm{x})^{3} 0 \mathrm{x} \hat{I} V_{1}$ for x ÎV V_{1} and aÎK, $\mathrm{P}_{1}(\mathrm{ax})=\inf \left(\mathrm{P}(\mathrm{ax}, \mathrm{y}): y \hat{I}_{2}\right)$
$\left.\inf |a| P\left(x^{1} y\right): y \hat{I V}_{2}\right) \overline{2 y}$
$\left.|a| \inf \left(x^{1} y\right): y \hat{I} v_{2}\right) 2 y$
$=|d| P 1|x|$
for $x, y \hat{I} v 1 P 1(x+y)=\inf (P(x+y, z): z \hat{I} v 2)$
$=\quad \inf \quad\left(P\left(x+y \cdot z_{1}+z_{2}\right): z=z_{1}+z_{2} \hat{I} v_{2}\right)$
$\mathrm{Z}=\mathrm{Z}_{1}+\mathrm{Z}_{2}$
$=\quad \inf \quad\left(P\left(x, z_{1}\right)+\left(y . z_{2}\right): z_{1}, z_{2} \hat{I} v_{2}\right)$
$\mathrm{Z}_{1} \mathrm{Z}_{2}$
$=£ \inf \quad\left\{\left(\mathrm{P}\left(\mathrm{x}, \mathrm{z}_{1}\right)+\mathrm{P}\left(\mathrm{y}_{1} \mathrm{z}_{2}\right): \mathrm{z}_{1}, \mathrm{z}_{2} \hat{\mathrm{I}} \mathrm{v}_{2}\right\}\right.$
$\mathrm{Z}_{1} \mathrm{Z}_{2}$
Thus P1 (x+y) \square P1 (x) + P1 (y)
Hence P 1 is a seminors on V1 and family $\mathrm{P} 2: \mathrm{V} 2 \square \mathrm{R}$ defined by $\mathrm{P} 2(\mathrm{y})=\operatorname{infx}\{\mathrm{P}(\mathrm{x}, \mathrm{y}): \mathrm{x} \square \mathrm{V} 1\}$ is a seminorm on V 2 .

V. CONCLUSION

In This paper we have introduced the concept of linear topological space to situation in which we have to deal with two vector space and a topology between the spaces. This helps to study both the space simultaneourly. The concept of topological vector space is well used in mathematics engineering and science and particularly is auantum mechains. Heance our theory of Binary linear Topological space helps in the future development of such ares.

REFERENCES

[1] Christopher EHeil. Lecture Notes :- Topologices from seminorms, comput math. Appl. Math. (2008)
[2] J.L. Kelley and Namioka, Linear Topological spaces, D.van Nostrand Company (1968)
[3] S. Nithyanantha Jothi and P. Thangavelu.on Binary Topologcal space, pacific-Asian Journal of Mathematics.
[4] S. Nithyanantha Jothi and P. Thangavelu. Topology between two sets. Journal of mathematical sciences and computer Applications.
[5] Raz Kupferman. Lecture Notes: Basis Notions in functional Analysis Tis.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

