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Abstract: The present experimental work deals with the study of free vibration characteristics of flexible rectangular stainless
steel plates. Initially plates were fabricated in sets of two with aspect ratio 1. The investigation is carried out to assess the effect of
boundary condition and variation of thickness on the Natural frequencies of plates. The results are presented in the form of
fundamental natural frequencies for various modes. Experimental natural frequency obtained for different modes are compared
with those from the Numerical study obtained by ANSYS Workbench.
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I. INTRODUCTION
In many engineering applications, the natural frequencies at which a body vibrates is of utmost importance. Estimating the natural
frequencies of a vibrating body is a common aspect of dynamic analysis and can be referred to as Eigen value analyses. The un-
damped free vibration response of a structure called mode shapes is also an important inherent property of a structure.
The free vibration response is caused by initial disturbance from the static equilibrium position. This disturbance causes amplitude
which creates oscillations or motions which repeat at regular intervals of time, the cycles completed in one second gives its Natural
Frequency. As we know the system will have maximum amplitude of vibration which causes failure of the system occurs when the
excitation frequency is same as that of its Natural frequency. Therefore, it is necessary to determine system’s Natural frequency so
that it would be easier to avoid its Structural failure. This failure is applicable to large structures and small machine parts also. Not
only bridges, towers and skyscrapers, but also blades, bearings, piping and fasteners can fail due to resonance. Air and gas vapour
columns can also resonate at their natural frequencies and can lead to failures. Every system depending on its mass and stiffness
when excited vibrates at its natural frequency, to change its Natural frequency either its mass or stiffness need to be changed.
Damping is one of the methods which affect the Natural frequency of the system. Architects consider this while designing large and
tall buildings. The Taipei 101, one the tallest building in the world, has a 660 Ton pendulum acting as mass damper to cancel any
resonance. Hence there is a necessity to determine on how the Mass and Stiffness affects the Natural frequency of the system. Many
of the previous studies have implemented various Experimental and Numerical methods to determine Natural frequency of the
system.
In this study, a range of plates from thin plates to moderately thin plates based on Classic Plate Theory (CPT) whose aspect ratio
kept as 1 are subjected to different boundary conditions and are excited by using Impact Hammer. The results obtained from
Experiment are compared with the Numerical results obtained from ANSYS Workbench.

1. EXPERIMENTAL SET-UP

Ll
Tri-Axial
accelerome

Fig.1 Experimental set-up
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Fig 1 shows the experimental set-up used in present study. The test specimens were made of stainless steel 304 with a cross-section
of 200*200mm. Different thicknesses of plates is mounted on to the fixture. The Plate is attached to the fixtures and the experiment
is conducted based on the different boundary conditions. Tri-axial accelerometer is then attached away from the Clamping boundary
by the aid of paraffin wax. Vibrosoft software is used for Vibration measurements. The connections of DAQ, accelerometer, Impact
Hammer, are as shown in figl. Pre-trigger samples are taken by Impact Hammer and are recorded. The reading is plotted in the FRF
graph. The peak obtained in the FRF graph is considered as excitation frequency. The natural frequencies are obtained by Numerical
results and excitation frequencies which are closer to natural frequency are considered as resonance conditions. The damping factor
is determined using the Half Power Band Width Method from FRF plots.Then compare the results of all boundary conditions with
different thicknesses along with Numerical results.

Table 1

Material Specifications of Plate
Material Stainless Steel 304L
Density, p 7880 kg/m®
Young's Modulus, E 200GPa
Tensile yield Strength 215MPa
Tensile Ultimate Strength 505MPa
Poisson’s ratio, p 0.29

A. Experimental Cases
The experiment was conducted for free vibration of flexible square plates of stainless steel for different thicknesses for different
boundary conditions were investigated experimentally by considering 20 cases shown in Table 3 to Table 7

Cases | Material Thickness Boundary Conditions
1 | Stainless Steel 304 200*200*2 Clamped-Free-Free-Free (CFFF)
2 | Stainless Steel 304 200*200*2 Clamped-Clamped-Free-Free (CCFF)
3 | Stainless Steel 304 200*200*2 Clamped-Free-Clamped-Free CFCF
4 | Stainless Steel 304 200*200*2 Clamped-Clamped-Clamped-Free CCCF

Table 3 Plate_2mm thickness

Cases | Material Thickness Boundary Conditions
1 | Stainless Steel 304 200*200*4 Clamped-Free-Free-Free (CFFF)
2 | Stainless Steel 304 200*200*4 Clamped-Clamped-Free-Free (CCFF)
3 | Stainless Steel 304 200*200*4 Clamped-Free-Clamped-Free CFCF
4 | Stainless Steel 304 200*200*4 Clamped-Clamped-Clamped-Free CCCF

Table 4 Plate_4mm thickness

Cases | Material Thickness Boundary Conditions
1 | Stainless Steel 304 200*200*6 Clamped-Free-Free-Free (CFFF)
2 | Stainless Steel 304 200*200*6 Clamped-Clamped-Free-Free (CCFF)
3 | Stainless Steel 304 200*200*6 Clamped-Free-Clamped-Free CFCF
4 | Stainless Steel 304 200*200*6 Clamped-Clamped-Clamped-Free CCCF

Table 5 Plate_6mm thickness

Cases | Material Thickness Boundary Conditions
1 | Stainless Steel 304 200*200*8 Clamped-Free-Free-Free (CFFF)
2 | Stainless Steel 304 200*200*8 Clamped-Clamped-Free-Free (CCFF)
3 | Stainless Steel 304 200*200*8 Clamped-Free-Clamped-Free CFCF
4 | Stainless Steel 304 200*200*8 Clamped-Clamped-Clamped-Free CCCF

Table 6 Plate_8mm thickness
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Material Thickness Boundary Conditions
1 | Stainless Steel 304 200*200*10 Clamped-Free-Free-Free (CFFF)
2 | Stainless Steel 304 200*200*10 Clamped-Clamped-Free-Free (CCFF)
3 | Stainless Steel 304 200*200*10 Clamped-Free-Clamped-Free CFCF
4 | Stainless Steel 304 200*200*10 Clamped-Clamped-Clamped-Free CCCF

Table 7 Plate_10mm thickness

I1l. RESULTS AND DISCUSSION

In the current study the Numerical study is carried by using Ansys Workbench 15.0. It is seen that Numerical values are in agree
with the experimental values and percentage of error are calculated by using the following formula

Numerical Frequency — Experimental Frequency

Numerical Frequency

The Error percentages of Natural frequencies are calculated for all plates of Different boundary conditions and for all modes are
tabulated below. The Table 8 shows error percentages of Natural frequencies (Hz) for different boundary conditions for the plates of
different thickness

Percentage Of Error(%) = % 100

Boundary Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
conditions| Exp | Num |Eror(%)] Exp | Num |[Eror(%)] Exp | Num |[Eror(%)] Exp | Num [Ermor(%)| Exp | Num | Eror (%)
200¥200*2 | CFFF | 33 | 4187 | 2119 | 97 | 10185 | 476 | 295 | 2612 | 1518 | 339 | 32699 | 367 | 383 | 37109 321
2001200*2 | CCFF | 86 | 8315 | 342 | 309 | 28694 | 769 | 422 | 32032 | 3L74 | 569 | 57084 | 050 | 772 | 7421 | 236
2001200*2 | CFCF | 249 | 26771 | 325 | 306 | 31785 | 373 | 528 | 5375 [ 081 | 737 | 73828 | 017 | 805 [ 80897 | 049
2007200%2 | CCCF | 292 | 28859 | 118 480 | 48179 | 037 762 | 76260 [ 0.08 899 | 92394 | 270 | 976 [ 97064 | 0.55
Boundary Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
conditions| Exp | Num |Ermor %){ Exp | Num |Eror(%)| Exp | Num |Eror(%)] Exp | Num |Emor(%)| Exp | Num | Eror (%)
2007200*4 | CFFF | 102 | 8370 | 2186 | 190 | 20303 | 346 | 520 | 51027 [ 190 | 642 | 65213 | 155 | 747 [ 7389 | 109
200¥200*4 | CCFF | 168 | 16599 | 121 | 557 | 57209 | 264 | 677 | 63900 [ 595 | 1149 | 113760 | 100 | 1504 [150150| 0.17
20012004 | CFCF | 534 | 5335 | 007 | 627 | 63350 | 103 | 1054 | 104210 | 114 | 1473 | 146090 | 021 | 1614 | 160900 031
20072004 | CCCF | 589 | 5577 | 230 | 944 | %960 | 165 | 1503 | 151800 | 0.98 | 1845 | 183740 [ 041 | 1924 |192910| 0.26
Boundary Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
conditions| Exp | Num |(Error (%)| Exp | Num |Eror(%)| Exp | Num |Eror(%)| Exp | Num |[Error(%)| Exp | Num | Eror (%)
200700% | CFFF | 124 | 1547 | 117 | 308 | 3806 | 163 | 743 | 7643 | 279 | 956 | 97406 | 185 | 1104 | 110080 029
2001200%6 | CCFF | 256 | 24821 | 314 | 889 | 85347 | 416 | 926 | 95463 | 300 | 1691 | 169150 | 0.03 | 2227 |223540] 0.38
20072006 | CFCF | 800 | 79846 | 019 | 943 | 94405 | Q.11 | 1541 | 154970 | 056 | 2192 | 218700 [ 023 | 2383 | 238870| 0.4
20012006 | CCCF | 803 | 85961 | 135 | 1403 | 142040 | 185 | 2258 | 225730 | 0.03 | 2732 | 273090 | 0.04 | 2864 |286260| 0.05
Boundary Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
conditions| Exp | Num |Emor(%)] Exp | Num |[Eror(%)] Exp | Num |[Eror(%)] Exp | Num [Emor(%)] Exp | Num | Eror (%)
20072008 | CFFF | 166 | 16643 | 008 | 401 | 4097 | 001 | 1006 | 100960 | 036 | 1291 | 129010 [ 007 | 1451 |145150| 0.03
2001200*8 | CCFF | 328 | 388 | 005 | 1124 | 112580 | 016 | 1248 | 125860 | 084 | 2230 | 222120 | 040 | 2936 |298310| 0.0
2001200*8 | CFCF | 1040 | 104730 | 070 | 1230 | 128010 | 073 | 2025 | 20360 | 055 | 2845 | 285180 | 024 | 3114 |311640| 0.8
200¥200*¢ | CCCF | 1019 | 112770 | 964 | 2211 | 187330 | 1803 | 2930 | 294340 | 046 | 3611 | 356870 | 119 | 3784 |372560| 157
Boundary Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
conditions| Exp | Num |Error(%)] Exp | Num [Error(%)] Exp | Num [Eror(%)| Exp | Num |[Eror(%)] Exp | Num | Error (%)
200720010 | CFFF | 196 | 2701 | 532 | 500 | 49814 | 057 | 1248 | 125350 | 044 | 1590 | 160240 | Q.77 | 179 | 179670 0.04
2007200*10 | CCFF | 486 | 40809 | 19.09 | 1386 | 13%520 | 066 | 1567 | 156020 | 044 | 2738 | 273040 | 005 | 3618 |361550| 007
200%200*10 | CFCF | 1296 | 129630 | 0.02 | 1535 | 153160 | 022 | 2503 | 251210 | 036 | 3508 | 350550 | 0.07 | 3828 [362630 0.4
200¥200*10 | CCCF | 1404 | 139510 | 064 | 2305 | 231120 | 027 | 3614 | 361670 | 007 | 4386 | 438460 | 003 | 4567 | 456490 005
Table 8 Comparison of Experimental and Numerical study

Plate dimensions

Plate dimensions

Plate dimensions

Plate dimensions

Plate dimensions
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From the Table 8,

1) For 2mm thickness plate, the error percentage is 21.19% for Mode 1 of CFFF boundary condition and 15.18% for Mode 3 of
CFFF boundary condition which are higher compared to remaining modes; this is because for a 2mm plate in CFFF boundary
condition the degree of freedom is high which results in more vibrations with frequent phase changes. At this condition it is
difficult to identify maximum displacement peaks corresponding to its Natural frequency. The error percentage is more
(31.74%) in Mode 3 of CCFF boundary condition. This is because the difference between Mode 2 and Mode 3 frequencies of
CCFF condition is less, therefore it is difficult to extract displacement peak for each consecutive mode from FRF plot resulting
in maximum error.

2) For 4mm thickness plate, the error percentage is 21.86% for Mode 1 of CFFF boundary condition is observed. Similar to 2mm
thickness plate, in 4mm thickness plate also it is difficult to extract displacement peak for lower modes especially in CFFF
boundary condition where the degree of freedom will be higher.

3) For 6mm thickness plate, the maximum error percentage is 4.13% and 2.99% for Mode 2 and Mode 3 of CCFF boundary
condition respectively; this is due to the less difference in Mode 2 and Mode 3 Natural frequencies.

4) For 8mm thickness plate, the maximum error percentage is 18.027% and 9.639% for Mode 2 and Mode 1 of CCCF boundary
condition respectively; this is due to the high frequency range especially for CCCF condition and it is difficult to extract
displacement peaks for the lower modes where the first Natural frequency starts.

5) For 10mm thickness plate, the maximum error percentage is 19.09% and 5.318% for Mode 1 of CFFF and Mode 1 of CCFF
boundary condition respectively; the Mode 1 and Mode 2 frequencies of CFFF and CCFF are the lowest frequencies compared
to the other frequencies of different boundary conditions. Therefore a small deviation from Experimental frequencies will result
in high error percentage.

A. Effect of Boundary conditions on Damping Factor
The effect of Boundary conditions on damping factor for various boundary conditions and for plates of all thicknesses has been
plotted below.
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Plate_10mm thickness
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From the above graphs it can be concluded that:-

1) For the Plates of 2mm, 4mm and 10mm thickness, the Damping Factor is high for CCCF and CCFF boundary conditions where
as it is low for CFFF and CFCF boundary conditions. Also, Damping factor is nearly same for CCCF and CCFF boundary
conditions.

2) For Plates of 6mm and 8mm thickness the Damping factor is maximum at CFCF boundary condition and CCCF boundary
condition respectively.

3) Based on above two observations, thick plates such as 8mm and 10mm thickness damped more due to higher mass, hence the
displacement is minimum and the damping factor is nearly same for different boundary conditions.

B. Effect of Thickness on Natural Frequency
The effect of thickness of plate on Natural frequency for various boundary conditions has been plotted below.
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From the above graphs it can be concluded that:-

1) Natural frequency increases with the increase in the thickness of the Plate. It can be clearly evidenced from the graph, as the
thickness changes the Natural frequencies are also increasing for all the Boundary conditions. Therefore it can be said that the
Natural frequency increases linearly with the increase in the Thickness irrespective of the Boundary conditions.

C. Effect of Boundary Conditions on Natural Frequency
The effect of thickness of plate on Natural frequency for various boundary conditions has been plotted below.
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From the above graphs it can be concluded that:-

1) Natural frequencies increase as the DOF of the system decreases giving less amplitude of displacement resulting in more cycles
per second i.e., frequency.

2) This can be further extended for Point supports, simply support structures and corner clamped structures to obtain the
relationship between DOF of the system to its Natural frequency.

IV. CONCLUSIONS
In this study, the Experimental Modal Analysis is compared with the Numerical study and the following Conclusions were made:

A. Based on observation, the difference in the Natural frequencies of Mode 2 and Mode 3 for CCFF boundary conditions is very
less compared to other modes of different boundary conditions.

B. The Percentage error was maximum for lower modes of Natural frequencies in CFFF and CFCF boundary conditions
irrespective of thickness.

C. The Percentage error was maximum for high range of Natural frequencies in CCCF boundary condition.

D. The Damping Factor is maximum for CCCF (three edges fixed) and CCFF (two adjacent edges fixed) boundary conditions.

E. As the thickness of the Plate increases the plate is damped due to mass of the plate rather than the boundary conditions and the
difference in Damping Factor for different boundary conditions is very less.

F. The Natural frequency of the Plate increases linearly with the thickness of the plate.

G. The Natural frequency of the Plate increases with the increase in the constraints to the boundary conditions in the order of
CFFF (one edge fixed), CCFF (two adjacent edges fixed), CFCF (two opposite edges fixed) and CCCF (three edges fixed).
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