

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 7 Issue: VII Month of publication: July 2019

DOI: http://doi.org/10.22214/ijraset.2019.7127

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

Volume 7 Issue VII, July 2019- Available at www.ijraset.com

Three Connected Domination in a Graph

V. Praba

Assistant Professor, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu, India.

Abstract: Claude Berge [1] introduced the concept of strong stable set S in a graph. These sets are independent and any vertex outside S can have at most one neighbour in S. This concept was generalized by E. Sampathkumar and L. Pushpalatha [5]. A maximal independent set is a minimal dominating set. What type of domination will result from maximal semi-strong sets? This new type of domination which we call us -Three-connected domination is initiated and studied in this paper.

Keywords: Strong stable set, Semi-strong set, Three-connected domination.

MSC: 05C69.

AMS Mathematics subject Classification (2010):11D09

I. INTRODUCTION

Let G = (V, E) be a simple, finite, undirected graph. A subset S of V(G) is called a strong stable set of G if $|N[v] \cap S| \le 1$ for V(G). It can be easily seen that such a sets is independent and the distance between any two vertices of S greater than equal to three. That is, the strong stable sets is a 2-packing. Generalising this concept, E. Sampathkumar and E. Pushpa Latha [5] introduced the concept of semi-strong sets. A subset E of E of E is called semi-strong stable if E of E in the converse is not true. For example, in E in E is a semi-strong stable set, then any component of E is either E in the distance between any two points of E is not equal to two. A maximal semi-strong stable set gives rise to a new type of domination and this is studied in this paper.

II. THREE-CONNECTED DOMINATING SET

- 1) Definition 2.1: Let S be a subset of V(G). For any $u \in V S$, if there exists $v \in V(G)$, $v \neq u$ such that v is adjacent with u and v is adjacent with a vertex of S, (that is, for any $u \in V(G)$ and $w \in S$ such that uvw is a path P_3), then S is called a 3-connected dominating set of G.
- 2) Remark 2.2: Any 3-connected dominating set S of G which is semi-strong is a maximal semi-strong set of G.
- 3) Theorem 2.3: Let S be a subset of V(G) such that for any $u \in V S$, there exists v and a vertex w in S such that uvw is a path. This property is super hereditary.

Proof

Let *S* be a subset of V(G) satisfying the hypothesis. Let *T* be a proper super set of *S*. Let $u \in V - T$. Then $u \in V - S$. By hypothesis, there exists a vertex v and a vertex w in *S* such that uvw is a path.

- a) Case 1: $v \in V T$. In this case, $u, v \in V T$ and $w \in T$ (since $w \in S \subset T$). Moreover uvw is a path.
- b) Case 2: $v \in T S$ and $u \in V T$. There exist w in S such that uvw is a path. That is, $u \in V T$, $v \in T$, $v \in T$ and uvw is a path.
- c) Case 3: $v \in S$ and $u \in V T$. There exist $w \in S$ such that uvw is a path. That is, $v \in T$ and $w \in T$ and uvw is a path. In all the three cases, for any $u \in V T$, there exist $v \in V(G)$, $v \neq u$ and $w \in T$ such that uvw is a path. Therefore the property for maximality of a semi-strong set S is super hereditary.
- 4) Remark 2.4: The above property is called a 3-connected dominating property.
- 5) Theorem 2.5: Any minimal 3-connected dominating set is a maximal semi-strong set.

Proof

Let S be a minimal 3-connected dominating set of G.

- a) Case 1: Let $u \in V S$
- Subcase 1: There exists $v \in V S$ and $w \in S$ such that uvw is a path. Suppose u has at least two neighbours in S. Let $x, y \in S$ such that u is adjacent with x and y.
- 1. Consider $S \{x\}$. For any u_1 in $V (S \{x\})$, $u_1 \neq x$, $u_1 \in V S$. There exists v in V(G), $v \neq u_1$ and w in S such that uvw is a path if w = x. Then u_1vw is a triangle and not a path, contradiction. Therefore $w \neq x$. Therefore $w \in S \{x\}$. Therefore there exists $w \in (S \{x\})$ such that u_1vw is a path.
- 2. Suppose $u_1 = x$. Then $u \in V S$ such that u is adjacent with x and adjacent with $y \in (S \{x\})$. That is, u_1 is adjacent with u and u is adjacent with $y \in (S \{x\})$. Therefore $S \{x\}$ is a 3-connected dominating set of G, a contradiction (since S is minimal).

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 7 Issue VII, July 2019- Available at www.ijraset.com

- ii) Subcase 2: There exist $v, w \in S$ such that uvw is a path.
 - 1. Suppose u has at least two neighbours say v, x in S. Let $u_1 \in V (S \{x\})$.
 - 2. Suppose $u_1 \neq x$. Therefore $u_1 \in V S$. Hence there exists v in V(G) and w in S such that u_1vw is a path. If w = x, then u_1vx is a triangle, a contradiction. Therefore w = x. Therefore $w \in S \{x\}$ and uvw is a path.
 - 3. Suppose $u_1 = x$. In this case u_1 is adjacent with $u \in V S$ and u is adjacent with $v \in (S \{x\})$. Also u_1uv is a path. Therefore $S \{x\}$ is a 3-connected dominating set, a contradiction since S is minimal. Therefore $|N(u) \cap S| \neq 1$.
 - b) Case 2: $u \in S$, Suppose u has at least two neighbours say x, y in S. Consider $S \{x\}$. Then $x \in V (S \{x\})$. x is adjacent with $u \in V(G)$ and u is adjacent with $y \in S \{x\}$. Therefore xuy is a path. Therefore $S \{x\}$ is a 3-connected dominating set of V(G), a contradiction. Therefore for any u in S, $|N(u) \cap S| \le 1$. Hence S is a semi-strong set of S. Since S is a 3-connected dominating set of S and since S is semi-strong set of S, we get that S is a maximal semi-strong set of S.
 - 6) Theorem 2.6: Any maximal semi-strong set of G is a minimal 3-connected dominating a set of G.

Proof

Suppose S is a maximal semi-strong set of G. Then S is a 3-connected dominating set of G. Suppose S is not a minimal 3-connected dominating set of G. Therefore there exists a proper subset T of S such that T is a 3-connected dominating set of G. Since S is semi-strong, T is semi-strong. Therefore T is a maximal semi-strong set of G which satisfies 3-connected property. Therefore T is a maximal semi-strong set of G, a contradiction, since S is a proper superset of T and S is a semi-strong set of G. Therefore S is a minimal 3-connected dominating set of G.

- 7) Definition 2.7: The minimum (maximum) cardinality of a minimal 3-connected dominating set of G is called 3-connected domination number of G (upper 3-connected domination number of G) and is denoted by $\gamma_{3-C}(G)(\Gamma_{3-C}(G))$.
- 8) Remark 2.8: Let S be a minimum cardinality of a maximal semi-strong set of G. Then S is a minimal 3-connected dominating set of G. Therefore $\gamma_{3-C}(G) \le |S| = lss(G) \le ss(G)$.
- 9) Remark 2.9: Let S be a maximum semi-strong set of G. Therefore S is a minimal 3-connected dominating set of G. Therefore $ss(G) = |S| \le \Gamma_{3-C}(G)$. Therefore $\gamma_{3-C}(G) \le lss(G) \le ss(G) \le \Gamma_{3-C}(G)$.
- 10) Illustration 2.10: Let G be the graph given in Figure 1:

In this graph, $S_1 = \{u_1, u_2, u_5, u_7, u_8, u_{11}\}$ is a ss-set of G. Hence ss(G) = 6. $S_2 = \{u_3, u_6, u_7, u_{11}\}$ is a maximal semi-strong set of G of minimum cardinality. Therefore lss(G) = 4. $S_3 = \{u_3, u_6, u_9\}$ is a minimum 3-connected dominating set of G. Hence $\gamma_{3-C}(G) = 3 \le lss(G) = 4$. That is, $\gamma_{3-C}(G) < lss(G)$.

Figure 1: An example graph G for $\gamma_{3-C}(G) < lss(G)$

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

Volume 7 Issue VII, July 2019- Available at www.ijraset.com

11) Theorem 2.11: Let S be a 3-connected dominating set of G. S is minimal if and only if for any w in S there exists a vertex u in V – S such that any 3-connected path from u to S ends in w.

Proof

Let S be a minimal 3-connected dominating set of G. Let $w \in S$. Then $S - \{w\}$ is not a 3-connected dominating set of G. Therefore there exists u in $V - (S - \{w\})$ such that there is no 3-connected path uv_1w_1 where $v_1 \in V(G)$ and $w_1 \in S - \{x\}$. Since S is a 3-connected dominating set of G, there exists $v_1 \in V(G)$ and w_1 in S such that uv_1w_1 is path. If $w_1 \neq w$, then there exists a 3-connected path uv_1w_1 from u to $S - \{w\}$, a contradiction. Therefore $w_1 = w$. Therefore any 3-connected path from u to S is of the form uvw. That is, there exists u in V - S such that any 3-connected path from u to S ends in w.

Conversely, let S be a 3-connected dominating set of G such that for any w in S, there exists u in V - S such that 3-connected path from u to S ends in w.

1) Claim: $S - \{w\}$ is not a 3-connected dominating set for any w in S.

Since S is a 3-connected dominating set of G satisfying the above property, there exists u in V - S such that any 3-connected path from u to S must end in w. Therefore $u \in V - (S - \{w\}), u \neq v$. Suppose there exists a 3-connected path from u to $S - \{w\}$ say uvw_1 , where $w_1 \in S - \{w\}$. Then $w_1 \in S$ and uvw_1 is a path ending in w_1 in S, $w_1 \neq w$, a contradiction. Therefore $S - \{w\}$ is not a 3-connected dominating set of G. Hence the claim.

Therefore *S* is a minimal 3-connected dominating set of *G*.

III. THREE-CONNECTED PATH IRREDUNDANCE

- 1) Definition 3.1: Let S be a subset of V(G) such that for any w in S, there exists a u in V S such that any 3-connected path from u to S ends in w. Then S is called a 3-connected path irredundant set of G.
- 2) *Theorem 3.2:* The above property of a set *S* is hereditary. Proof

Let S be a subset of V(G) satisfying the above property. Let T be a proper subset of S.

Let $w \in T$. Then $w \in S$. Therefore there exist $u \in V - S$ such that any 3-connected path from u to S ends in w. Therefore $u \in V - T$. Suppose there exists a 3-connected path such that $w_1 \in T$,

 $w \neq w_1$. Then $w_1 \in S$. Therefore there exists a 3-connected path from u to w_1 in S, a contradiction. Therefore $w_1 = w$. Hence T is a subset of V(G) satisfying the above property. Hence the theorem.

- 3) Definition 3.3: Let S be a 3-connected path set of G. The minimum (maximum) cardinality of a maximal 3-connected path irredundant set of G is called 3-connected path irredundant number of G (upper 3-connected path irredundant number of G) is denoted by $ir_{3-C}(G)$ ($IR_{3-C}(G)$).
- 4) Remark 3.4: Any 3-consecutive dominating set of G is minimal if and only if it a 3-consecutive path irredundant set of G.
- 5) Theorem 3.5: Every minimal 3-connected dominating set of G is a maximal 3-connected path irredundant set of G.

Proof

Let S be a minimal 3-connected dominating set of G. Then S satisfies the property that for every w in S, there exists u in V - S such that any 3-connected path from u to S ends in w. Therefore S is a 3-connected path irredundant set of G. Suppose S is not a maximal 3-connected path irredundant set of G.

Figure 2: An example graph G for which $ir_{3-C}(G) < \gamma_{3-C}(G)$

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

Volume 7 Issue VII, July 2019- Available at www.ijraset.com

Since 3-connected path irredundant is hereditary, it is enough to consider 1-maximality. Since S is not maximal, there exists u in (V-S)such that $S \cup \{u\}$ is 3-connected path irredundant set of G. Therefore for any x in $S \cup \{u\}$, there exist y in $V - (S \cup \{u\})$ such that any 3-connected path from y in $S \cup \{u\}$ ends in x. Take x = u. Then there exists y in $V - (S \cup \{u\})$ such that any 3-connected path from y in $S \cup \{u\}$ ends in u. That is, there exists y in V - S such that any 3-connected path from y to S does not end in any vertex of S, that is, S does not satisfy 3-connected path irredundant condition, a contradiction. Therefore S is a maximal 3-connected path irredundant set of G.

- 6) Remark 3.6: For any graph G, $ir_{3-C}(G) \le \gamma_{3-C}(G) \le lss(G) \le ss(G) \le \Gamma_{3-C}(G) \le IR_{3-C}(G)$.
- 7) Remark 3.7: In the following example, $ir_{3-C}(G) < \gamma_{3-C}(G)$. Let G be the graph given in Figure 2. The set
- $S_1 = \{u_2, u_4, u_6\}$ is a minimum 3-connected dominating set of G. Therefore $\gamma_{3-C}(G) = 3$.

The set $S_2 = \{u_3, u_5\}$ is maximum 3-connected path irredundant set of G. $ir_{3-C}(G) = 2$.

Therefore $ir_{3-C}(G) < \gamma_{3-C}(G)$

REFERENCES

- C. Berge, Graphs and Hyper graphs, North Holland, Amsterdam, 1973.
- F. Harary, Graph Theory, Addison-Wesley Reading, MA (1969).
- T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., 1998.
- [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced topics, Marcel Dekker Inc., 1998.
- [5] E. Sampathkumar and L. Pushpa Latha, Semi-Strong Chromatic Number of a Graph, Indian Journal of Pure and Applied Mathematics, 26(1): 35-40, 1995.

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)