Three Connected Domination in a Graph

V. Praba
Assistant Professor, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu, India.

Abstract

Claude Berge [1] introduced the concept of strong stable set S in a graph. These sets are independent and any vertex outside S can have at most one neighbour in S. This concept was generalized by E. Sampathkumar and L. Pushpalatha [5]. A maximal independent set is a minimal dominating set. What type of domination will result from maximal semi-strong sets? This new type of domination which we call us -Three-connected domination is initiated and studied in this paper.

Keywords: Strong stable set, Semi-strong set, Three-connected domination.
MSC: 05C69.
AMS Mathematics subject Classification (2010):11D09

I. INTRODUCTION

Let $G=(V, E)$ be a simple, finite, undirected graph. A subset S of $V(G)$ is called a strong stable set of G if $|N[\nu] \cap S| \leq 1$ for v in $V(G)$. It can be easily seen that such a sets is independent and the distance between any two vertices of S greater than equal to three. That is, the strong stable sets is a 2-packing. Generalising this concept, E. Sampathkumar and L. Pushpa Latha [5] introduced the concept of semi-strong sets. A subset S of $V(G)$ is called semi-strong stable if $|N(v) \cap S| \leq 1$ for every vin $V(G)$. A strong stable set is semi-strong stable but the converse is not true. For example, in C_{5}, any two consecutive vertices is a semi- strong stable set. If S is a semi-strong stable set, then any component of S is either K_{1} or K_{2} and the distance between any two points of S is not equal to two. A maximal semi-strong stable set gives rise to a new type of domination and this is studied in this paper.

II. THREE-CONNECTED DOMINATING SET

1) Definition 2.1: Let S be a subset of $V(G)$. For any $u \in V-S$, if there exists $v \in V(G), v \neq u$ such that v is adjacent with u and v is adjacent with a vertex of S, (that is, for any $u \in V(G)$ and $w \in S$ such that $u v w$ is a path P_{3}), then S is called a 3-connected dominating set of G.
2) Remark 2.2: Any 3-connected dominating set S of G which is semi-strong is a maximal semi- strong set of G.
3) Theorem 2.3: Let S be a subset of $V(G)$ such that for any $u \in V-S$, there exists v and a vertex w in S such that $u v w$ is a path. This property is super hereditary.
Proof
Let S be a subset of $V(G)$ satisfying the hypothesis. Let T be a proper super set of S. Let $u \in V-T$. Then $u \in V-S$. By hypothesis, there exists a vertex v and a vertex w in S such that $u v w$ is a path.
a) Case $1: v \in V-T$. In this case, $u, v \in V-T$ and $w \in T$ (since $w \in S \subset T$). Moreover $u v w$ is a path.
b) Case 2: $v \in T-S$ and $u \in V-T$. There exist w in S such that $u v w$ is a path. That is, $u \in V-T, v \in T, w \in T$ and $u v w$ is a path.
c) Case 3: $v \in S$ and $u \in V-T$. There exist $w \in S$ such that $u v w$ is a path. That is, $v \in T$ and $w \in T$ and $u v w$ is a path. In all the three cases, for any $u \in V-T$, there exist $v \in V(G), v \neq u$ and $w \in T$ such that $u v w$ is a path. Therefore the property for maximality of a semi-strong set S is super hereditary.
4) Remark 2.4: The above property is called a 3-connected dominating property.
5) Theorem 2.5: Any minimal 3-connected dominating set is a maximal semi-strong set.

Proof
Let S be a minimal 3-connected dominating set of G.
a) Case 1: Let $u \in V-S$
i) Subcase 1: There exists $v \in V-S$ and $w \in S$ such that $u v w$ is a path. Suppose u has at least two neighbours in S. Let $x, y \in S$ such that u is adjacent with x and y.

1. Consider $S-\{x\}$. For any u_{1} in $V-(S-\{x\}), u_{1} \neq x, u_{1} \in V-S$. There exists v in $V(G), v \neq u_{1}$ and w in S such that $u v w$ is a path if $w=x$. Then $u_{1} v w$ is a triangle and not a path, contradiction. Therefore $w \neq x$. Therefore $w \in S-\{x\}$. Therefore there exists $w \in(S-\{x\})$ such that $u_{1} v w$ is a path.
2. Suppose $u_{1}=x$. Then $u \in V-S$ such that u is adjacent with x and adjacent with $y \in(S-\{x\})$. That is, u_{1} is adjacent with u and u is adjacent with $y \in(S-\{x\})$. Therefore $S-\{x\}$ is a 3-connected dominating set of G, a contradiction (since S is minimal).
ii) Subcase 2: There exist $v, w \in S$ such that $u v w$ is a path.
3. Suppose u has at least two neighbours say v, x in S. Let $u_{1} \in V-(S-\{x\})$.
4. Suppose $u_{1} \neq x$. Therefore $u_{1} \in V-S$. Hence there exists v in $V(G)$ and w in S such that $u_{1} v w$ is a path. If $w=x$, then $u_{1} v x$ is a triangle, a contradiction. Therefore $w=x$. Therefore $w \in S-\{x\}$ and $u v w$ is a path.
5. Suppose $u_{1}=x$. In this case u_{1} is adjacent with $u \in V-S$ and u is adjacent with $v \in(S-\{x\})$. Also $u_{1} u v$ is a path. Therefore $S-\{x\}$ is a 3-connected dominating set, a contradiction since S is minimal. Therefore $|N(u) \cap S| \neq 1$.
b) Case 2: $u \in S$, Suppose u has at least two neighbours say x, y in S. Consider $S-\{x\}$. Then $x \in V-(S-\{\mathrm{x}\}) . x$ is adjacent with $u \in V(G)$ and u is adjacent with $y \in S-\{x\}$. Therefore $x u y$ is a path. Therefore $S-\{x\}$ is a 3 -connected dominating set of $V(G)$, a contradiction. Therefore for any u in $S,|N(u) \cap S| \leq 1$. Hence S is a semi-strong set of G. Since S is a 3-connected dominating set of G and since S is semi-strong set of G, we get that S is a maximal semi- strong set of G.
6) Theorem 2.6: Any maximal semi-strong set of G is a minimal 3-connected dominating a set of G.

Proof
Suppose S is a maximal semi-strong set of G. Then S is a 3-connected dominating set of G. Suppose S is not a minimal 3-connected dominating set of G. Therefore there exists a proper subset T of S such that T is a 3-connected dominating set of G. Since S is semistrong, T is semi-strong. Therefore T is a maximal semi-strong set of G which satisfies 3 -connected property. Therefore T is a maximal semi-strong set of G, a contradiction, since S is a proper superset of T and S is a semi-strong set of G. Therefore S is a minimal 3-connected dominating set of G.
7) Definition 2.7: The minimum (maximum) cardinality of a minimal 3-connected dominating set of G is called 3-connected domination number of G (upper 3-connected domination number of G) and is denoted by $\gamma_{3-c}(G)\left(\Gamma_{3-c}(\mathrm{G})\right.$).
8) Remark 2.8: Let S be a minimum cardinality of a maximal semi-strong set of G. Then S is a minimal 3-connected dominating set of G. Therefore $\gamma_{3-C}(G) \leq|S|=l s s(G) \leq s s(G)$.
9) Remark 2.9: Let S be a maximum semi-strong set of G. Therefore S is a minimal 3-connected dominating set of G. Therefore $s s(G)=|S| \leq \Gamma_{3-c}(\mathrm{G})$. Therefore $\gamma_{3-c}(G) \leq l s s(G) \leq s s(G) \leq \boldsymbol{\Gamma}_{3-c}(\mathrm{G})$.
10) Illustration 2.10: Let G be the graph given in Figure 1:

In this graph, $S_{1}=\left\{u_{1}, u_{2}, u_{5}, u_{7}, u_{8}, u_{11}\right\}$ is a $s s$-set of G. Hence $s s(G)=6 . S_{2}=\left\{u_{3}, u_{6}, u_{7}, u_{11}\right\}$ is a maximal semi-strong set of G of minimum cardinality. Therefore $l s s(G)=4 . \quad S_{3}=\left\{u_{3}, u_{6}, u_{9}\right\}$ is a minimum 3-connected dominating set of G.
Hence $\gamma_{3-c}\left((G)=3 \leq l s s(G)=4\right.$. That is, $\gamma_{3-c}(G)<l s s(G)$.

Figure 1: An example graph G for $\boldsymbol{\gamma}_{3-\boldsymbol{C}}(G)<l s s(G)$
11) Theorem 2.11: Let S be a 3-connected dominating set of G. S is minimal if and only if for any w in S there exists a vertex u in V $-S$ such that any 3-connected path from u to S ends in w.

Proof

Let S be a minimal 3-connected dominating set of G. Let $w \in S$. Then $S-\{w\}$ is not a 3-connected dominating set of G. Therefore there exists u in $V-(S-\{w\})$ such that there is no 3-connected path $u v_{1} w_{1}$ where $v_{1} \in V(G)$ and $w_{1} \in S-\{x\}$. Since S is a 3connected dominating set of G, there exists $v_{1} \in V(G)$ and w_{1} in S such that $u v_{1} w_{1}$ is path. If $w_{1} \neq w$, then there exists a 3-connecteed path $u v_{1} w_{1}$ from u to $S-\{w\}$, a contradiction. Therefore $w_{1}=w$. Therefore any 3-connected path from u to S is of the form $u v w$. That is, there exists u in $V-S$ such that any 3-connected path from u to S ends in w.
Conversely, let S be a 3-connected dominating set of G such that for any w in S, there exists u in $V-S$ such that 3-connected path from u to S ends in w.

1) Claim: $S-\{w\}$ is not a 3-connected dominating set for any w in S.

Since S is a 3-connected dominating set of G satisfying the above property, there exists u in $V-S$ such that any 3-connected path from u to S must end in w. Therefore $u \in V-(S-\{w\}), u \neq v$. Suppose there exists a 3-connected path from u to $S-\{w\}$ say $u v w_{1}$, where $w_{1} \in S-\{w\}$. Then $w_{1} \in S$ and $u v w_{1}$ is a path ending in w_{1} in $S, w_{1} \neq w$, a contradiction. Therefore $S-\{w\}$ is not a 3connected dominating set of G. Hence the claim.
Therefore S is a minimal 3-connected dominating set of G.

III. THREE-CONNECTED PATH IRREDUNDANCE

1) Definition 3.1: Let S be a subset of $V(G)$ such that for any w in S, there exists a u in $V-S$ such that any 3-connected path from u to S ends in w. Then S is called a 3-connected path irredundant set of G.
2) Theorem 3.2: The above property of a set S is hereditary.

Proof
Let S be a subset of $V(G)$ satisfying the above property. Let T be a proper subset of S.
Let $w \in T$. Then $w \in S$. Therefore there exist $u \in V-S$ such that any 3-connected path from u to S ends in w. Therefore $u \in V-T$. Suppose there exists a 3-connected path such that $w_{1} \in T$,
$w \neq w_{1}$. Then $w_{1} \in S$. Therefore there exists a 3-connected path from u to w_{1} in S, a contradiction. Therefore $w_{1}=w$. Hence T is a subset of $V(G)$ satisfying the above property. Hence the theorem.
3) Definition 3.3: Let S be a 3-connected path set of G. The minimum (maximum) cardinality of a maximal 3-connected path irredundant set of G is called 3-connected path irredundant number of G (upper 3-connected path irredundant number of G) is denoted by $i r_{3-C}(G)\left(I R_{3-C}(G)\right)$.
4) Remark 3.4: Any 3-consecutive dominating set of G is minimal if and only if it a 3-consecutive path irredundant set of G.
5) Theorem 3.5: Every minimal 3-connected dominating set of G is a maximal 3-connected path irredundant set of G.

Proof
Let S be a minimal 3-connected dominating set of G. Then S satisfies the property that for every w in S, there exists u in $V-S$ such that any 3-connected path from u to S ends in w. Therefore S is a 3-connected path irredundant set of G. Suppose S is not a maximal 3connected path irredundant set of G.

Figure 2: An example graph G for which $i r_{3-C}(G)<\gamma_{3-\boldsymbol{c}}(G)$

Since 3-connected path irredundant is hereditary, it is enough to consider 1-maximality. Since S is not maximal, there exists u in $(V-S)$ such that $S \cup\{u\}$ is 3-connected path irredundant set of G. Therefore for any x in $S \cup\{u\}$, there exist y in $V-(S \cup\{u\})$ such that any 3-connected path from y in $S \cup\{u\}$ ends in x. Take $x=u$. Then there exists y in $V-(S \cup\{u\})$ such that any 3-connected path from y in $S \cup\{u\}$ ends in u. That is, there exists y in $V-S$ such that any 3-connected path from y to S does not end in any vertex of S, that is, S does not satisfy 3-connected path irredundant condition, a contradiction. Therefore S is a maximal 3-connected path irredundant set of G.
6) Remark 3.6: For any graph G, $\operatorname{ir}_{3-C}(G) \leq \boldsymbol{\gamma}_{3-C}(G) \leq l s s(G) \leq s s(G) \leq \Gamma_{3-\boldsymbol{C}}(G) \leq I R_{3-c}(G)$.
7) Remark 3.7: In the following example, $i r_{3-C}(G)<\gamma_{3-C}(G)$. Let G be the graph given in Figure 2. The set
$S_{1}=\left\{u_{2}, u_{4}, u_{6}\right\}$ is a minimum 3-connected dominating set of G. Therefore $\gamma_{3-C}(G)=3$.
The set $S_{2}=\left\{u_{3}, u_{5}\right\}$ is maximum 3-connected path irredundant set of G. $i_{3} r_{-C}(G)=2$.
Therefore $i r_{3-C}(G)<\gamma_{3-C}(G)$

REFERENCES

[1] C. Berge, Graphs and Hyper graphs, North Holland, Amsterdam, 1973.
[2] F. Harary, Graph Theory, Addison-Wesley Reading, MA (1969).
[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., 1998.
[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced topics, Marcel Dekker Inc., 1998.
[5] E. Sampathkumar and L. Pushpa Latha, Semi-Strong Chromatic Number of a Graph, Indian Journal of Pure and Applied Mathematics, 26(1): 35-40, 1995.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

