

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 7 Issue: VIII Month of publication: August 2019 DOI: http://doi.org/10.22214/ijraset.2019.8040

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

Investigational Study of Steel Fibre Reinforced Cement Concrete (SFRC) with Superplasticizer

Krishnakant Rathore¹, Prof. Archana Tiwari²

¹P.G. Student, ²Professor, Department of Civil Engineering, Madhav Institute of Technology & Science, Gwalior, Madhya Pradesh, India

Abstract: Fibre Reinforced cement concrete is broadly utilized now a days. Different types of fibres added are being used to improve the quality of concrete. In this work investigation is carried out to determine the effect of Super Plasticizers in Steel fibre reinforced cement concrete through a series of tests. Compressive quality of the control cubes and the compressive quality of steel fibre reinforced cement concrete containing superplasticizer is compared. The compressive strength of concrete containing Super Plasticizers and various percentages (0.5%, 0.75%, &1%) of steel fibre is determined after 7, 14 and 28 Days of curing stages. It is found that compressive strength of steel fibre reinforced cement concrete increases with the addition of superplasticizer and increase in percentage of steel fibre.

Keywords: Steel Fibre, Superplasticizer, compressive strength, Initial and final setting time.

I.

INTRODUCTION

Tensile strength of Plain cement concrete is very low; this leads to constrained pliability and tiny protection from splitting. In the solid concrete member inward micro cracks are naturally present due to its very poor tensile strength. These micro cracks, inevitably prompting to break the solid. Each kind of fibre has its specific properties and confinements. Different types of fibres being utilized in cement concrete are steel filaments, carbon, polypropylene, glass, nylons, asbestos sand coir fibre etc. They can be roundabout or level. The ratio of its length to its diameter is called as aspect ratio. Steel fibres are used in various types of civil structures.

II. MATERIALS USED

In this investigational work following materials are used cement, Coarse aggregate, Superplasticizer, water, fine aggregate, Steel fibre.

1) Steel Fibre: Brand Name: Perfect Solution, Pune

S. No.	Physical Properties	Results
1.	Fibre type	Hook End
2.	Specific gravity	2.55
3.	Aspect Ratio	58
4.	Length	35 mm
5.	Diameter	0.60 mm

Table1. Properties of steel fibre (https://www.perfectsteelfiber.com)

Fig. 1. Steel Fibre

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 7 Issue VIII, Aug 2019- Available at www.ijraset.com

- 2) *Water:* Potable water is by and large viewed as acceptable for blending concrete. Locally accessible drinking water is utilized for mixing.
- 3) Cement: OPC 43 grade cement as per IS 8112 was used. Brand Name: Ultra Tech

	=	
S. No.	Physical properties	Results
1	OPC Specific gravity	3.14
2	Fineness of OPC	5.26 %
3	Standard Consistency	33 %
3	OPC Initial Setting Time	55 Minutes
4	OPC Final Setting Time	210 Minutes

Table2. Properties of OPC

- 4) Coarse Aggregate: Nominal maximum size of aggregate was 20mm. It was collected from local material suppliers. Specific gravity of coarse aggregate was 2.85. Fineness Modulus of coarse aggregate was 6.91
- 5) *Fine Aggregate*: Locally available River sand collected from local material supplier and passing through 4.75mm sieve was used. Its specific gravity was 2.67. The fine aggregate grading zone was II as per IS 383-1970. Fineness modulus of fine aggregate was 2.87
- 6) Super Plasticizers: Conplast Sp 430: Brand Name: Fosroc Chemicals, India, pvt. ltd.

S. No.	Physical Properties	Results
1	Superplasticizer type	Conplast, SP 430
2.	Content of Chloride	Nil
3.	Specific gravity	1.225 at 30 ^o C
4.	Air entrainment	1 % Approx extra air is entrained

III. METHODOLOGY

First of All, weigh all the Materials i.e. Cement, Sand, Coarse aggregate, steel fibre, water, superplasticizer. All the materials were mixed by Mechanical Mixer. Control concrete and steel fibre reinforced cement concrete (with and without superplasticizer) samples (dimensions 150 mm x 150 mm) were prepared.

A. Following Steps Are Follows In This Research

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 7 Issue VIII, Aug 2019- Available at www.ijraset.com

B. Compressive Strength Test

Concrete samples of size 150mm *150mm *150 mm were tested for compressive strength. The table vibrator was utilized to compact the concrete in the moulds. The top surface of the concrete was smoothed. After 24 hours, the solid shapes were demoulded and were moved to curing water tank for different ages curing i.e 7 days, 14 days, and 28 days. After 7 days, 14 days, 28 days samples were tested on compression testing machine according to I.S. 516-1959. The failure load was noted. Compressive strength (MPa) = $\frac{Crushing load}{Crushing load}$

 $(MPa) = \frac{crussing road}{cross-sectional area}$

Fig.2. compressive strength test on CTM Machine

IV. RESULTS

A. Compressive Strength Test

It is done via CTM machine. Solid cubes compressive strength were gotten at 7 days, 14 days, and 28 days. It is performed in our college Lab. The consequences of the tests are demonstrated as follows:

Days Sample Designation		Compressive strength (MPa)	Average strength (MPa)		
	PS1	34.43			
7 days	PS2 33.33		32.75		
	PS3 30.50				
	PS1	38.50			
14 days	PS2	40.22	38.05		
	PS3	35.44			
	PS1	41.32			
28 days	PS2	38.57	40.04		
	PS3	40.24			

Table 4. Compressive strength of plain concrete with 0 % fibres

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

Volume 7 Issue VIII, Aug 2019- Available at www.ijraset.com

Days	Sample Designation	Compressive strength (MPa)	Average strength (MPa)		
	SS1	38.11			
7 days	SS2	35.42	36.64		
	SS3 36.41				
14 days	SS1	37.33			
	SS2	40.19	38.73		
	SS3	38.67			
28 days	SS1	41.14			
	SS2	40.31	41.55		
	SS3	43.22			

Table 5. Compressive strength of plain concrete with Superplasticizer and 0% fibre

Table 6. Compressive strength of concrete with different fibre percentages

Compressive strength (MPa)									
	0.5 % Steel Hook End Fibre			0.75% Steel Hook End fibre			1 % Steel Hook End fibre		
Days	Sample Designation		Average strength (MPa)	Sample Designation		Average strength (MPa)	Sample Designation		Average strength (MPa)
7 days	SF11	51.15	48.54	SF21	50.51	50.49	SF31	51.53	51.35
	SF12	48.14		SF22	48.50		SF32	49.12	
	SF13	46.33		SF23	52.47		SF33	53.42	
1.4	SF11	48.24		SF21	52.22	51.9	SF31	54.91	
14 dave	SF12	51.15	49.50	SF22	50.12		SF32	50.89	53.17
days	SF13	49.11		SF23	53.36		SF33	53.73	
28 days	SF11	52.15		SF21	54.23		SF31	55.78	
	SF12	54.12	52.20	SF22	52.33	53.99	SF32	57.45	56.26
	SF13	50.33		SF23	55.41		SF33	55.56	

Table 7. Compressive strength of concrete with Superplastisizer and different fibre percentages

Compressive strength (MPa)									
Deri	Superplasticizer and 0.5 % Steel			Superplasticizer and 0.75%			Superplasticizer and 1% Steel		
	Hook End Fibre			Steel Hook End fibre			Hook End fibre		
Day	Sample		Average	Sample		Average	Sample		Average
5	Designatio		strength	Designatio		strength	Designatio		strength
	n		(MPa)	n		(MPa)	n		(MPa)
7	SSF11	50.33		SSF21	54.71	52.71	SSF31	57.51	57.15
/ dave	SSF12	55.12	52.63	SSF22	50.89		SSF32	55.83	
uays	SSF13	52.46		SSF23	52.55		SSF33	58.12	
14	SSF11	58.22		SSF21	58.84	57.28	SSF31	59.27	
14 dava	SSF12	56.55	56.40	SSF22	55.29		SSF32	60.44	60.32
uays	SSF13	54.44		SSF23	57.73		SSF33	61.27	
20	SSF11	61.42		SSF21	63.38	64.89	SSF31	68.74	
28 days	SSF12	63.78	61.82	SSF22	66.52		SSF32	64.99	67.90
	SSF13	60.27	1	SSF23	64.78	1	SSF33	69.97	

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 7 Issue VIII, Aug 2019- Available at www.ijraset.com

Table 8. Average compressive strengt	n variation of various	samples at 28 days
--------------------------------------	------------------------	--------------------

	Average Compressive strength (Mpa)								
			Average compressive strength of concrete with different fibre			Average compressive strength of concrete with			
	Average	Average				Superplastisizer and different fibre percentages (Mpa)			
	strength of	Compressive							
	plain	strength of plain	percentages (Mpa)						
Days	concrete	concrete with	0.5 %	0.75%					
	with 0 %	Superplasticizer	Steel	Steel	1 % Steel	Superplasticizer	Superplasticizer	Superplasticizer	
	fibres	and 0% fibre	Hook	Hook	Hook	and 0.5 % Steel	and 0.75% Steel	and 1% Steel	
	(Mpa)	(Mpa)	End	End	End fibre	Hook End Fibre	Hook End fibre	Hook End fibre	
			Fibre	fibre					
28	40.04	<i>A</i> 1 55	52.20	53.00	56.26	61.82	64 80	67.90	
days	40.04	41.55	52.20	55.99	50.20	01.62	04.09	07.90	

V. CONCLUSION

The following conclusions could be drawn from the present investigations.

- *A*. It is observed that compressive strength of concrete is on higher side for 1 % steel fibre as compared to that produced from 0 %, 0.5 %. 0.75 % steel fibre.
- B. The addition of steel fiber and superplasticizer increases the compressive strength to a great extent.
- *C.* The concrete containing 1 % steel fibre along with superplasticizer is having average compressive strength 68 % higher than the concrete without super plasticizer

REFERENCES

- Shende A.M., Pande A.M., Pathan M. Gulfam, "Experimental Study on Steel Fiber Reinforced Concrete for M-40 Grade", International Refereed Journal of Engineering and Science (IRJES)Volume 1, Issue 1 (September 2012). Page no. 43-48
- [2] Vairagade Vikrant S. Kene Kavita S., "Introduction to Steel Fiber Reinforced Concrete on Engineering Performance of Concrete", International Journal of Scientific & Technology Research Volume 1, Issue 4, May 2012.
- [3] Omanakuttan Athira, An Experimental study on Strength Behavior of Steel Fiber, Glass Fiber with Fly Ash and Rice Husk International Journal of Advance Research, Ideas and Innovations in Technology (IJARIIT) Volume3, Issuel- 2017, page no.394
- [4] Gehlot Tarun, Seervi Divanshu, Dr. Chowdhary Peeyush, "Study of the Compressive Strength Behaviour of Steel Fibre Reinforced Concrete Using Various Percentage of Steel Fibre", International Journal of Engineering Science Invention Volume 6, Issue 8, August 2017
- [5] Mr. Gadge Nikhil A., Prof. S. S. Vidhale, "Mix Design of Fiber Reinforced Concrete (FRC) Using Slag & Steel Fiber", International Journal of Modern Engineering Research (IJMER) Vol. 3, Issue. 6, Nov - Dec. 2013
- [6] Khadake S.N., Konapure C.G., "An Investigation of Steel Fiber Reinforced Concrete with Fly Ash", IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) Volume 4, Issue 5 (Nov-Dec. 2012).
- [7] Reddy Mekala Prathap, Dr. Reddy K. Chandrasekhar, Determination of Mechanical Properties of Steel Fiber Reinforced Concrete with Mineral Admixtures, International Journal of Science and Research (IJSR), Volume 4 Issue 5, May 2015
- [8] IS 456-2000, Methods of Test for Aggregates of Concrete. Plain and Reinforced Concrete- Code of Practice
- [9] IS 10262 2009, Indian standard, concrete Mix Proportioning Guidelines.
- [10] IS 10262 1982, Indian standard, concrete Mix Proportioning Guidelines.
- [11] IS 383 1970, Indian standard specification for coarse and fine aggregates from natural sources for concrete.
- [12] BIS 9103:1999, "Admixtures for Concrete", First Revision, Bureau of Indian Standard, New Delhi.
- [13] Satpute P. C., V. P. Kulkarni, M.R. Wakchaure, A.V. Navale, "Comparative and experimental study of various mix design concrete using steel and glass fiber", Vol-2 Issue-4 2016, IJARIIE
- [14] Joshi Avinash, Reddy Pradeep, Kumar Punith and Hatker Pramod, "Experimental work on steel fibre reinforced concrete", International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October-2016
- [15] Vishal Gadgihalli, MeenaY.R, Sindu, Raghavendra Prasad Havanje Dinakar, "Analysis Of Properties Of Concrete Using Steel Fibers As Fiber Reinforcement Admixture", International Journal of Research – GranthaalayahVol.5 (Iss.4: RASM) April, 2017
- $[16] https://www.perfectsteelfiber.com/steel-fiber.html {\content{thm:steel-fiber}} html {\content{tmm:steel-fiber}} html {\conten$
- [17] https://www.fosroc.com/english/product/show/conplast-sp430-

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)