An Advance Class of Analytic Functions with Fekete-Szegö Inequality using subordination Method

S. K. Gandhi ${ }^{1}$, Gurmeet Singh ${ }^{2}$, Preeti Kumawat ${ }^{3}$, G. S. Rathore ${ }^{4}$, Lokendra Kumawat ${ }^{5}$
${ }^{1,3,4,5}$ Department of Mathematics and Statistics, Mohanlal Sukhadia University, Udaipur (Raj) 313001
${ }^{2}$ Department of Mathematics, GSSDGS Khalsa College, Patiala, India

Abstract

In this Paper we have introduced an advance class of analytic functions along with its subclasses by using principle of subordination and as so obtained sharp upper Bound of the function $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ belonging to these classes. Extremal functions are also investigated.

Keywords: Bounded functions, Close to convex function, extremal function, Inverse Starlike functions, Starlike functions, Univalent functions.

I. INTRODUCTION

Let \mathcal{A} denote the class of analytic function
$f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$
In the unit disc $=\{z:|z|<1 \mid\}, \mathcal{S}$ be the class of analytic univalent functions in \mathbb{E}.
Bieber Bach [7] proved that $\left|a_{2}\right| \leq 2$ for the functions $f(z) \in \mathcal{S}$. and Löwner [5] proved that $\left|a_{3}\right| \leq 3$ for the functions $f(z) \in \mathcal{S}$.. With the above known estimates this inequality plays an important role to determining estimates of higher coefficients for some sub classes \mathcal{S} \{Chhichra [11], Babalola [6]\}
Using Löwner's method [5] In 1933, Fekete and szego investigated a well known relation between a_{3} and a_{2}^{2} for the class \mathcal{S}
$\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{aligned} 3-4 \mu & \text {, if } \mu \leq 0 \\ 1+2 e^{\left(\frac{-2 \mu}{1-\mu}\right)} & , \text { if } 0 \leq \mu \leq 1 \\ 4 \mu-3 & \text {,if } \mu \geq 1\end{aligned}\right.$
Let us define some subclasses of \mathcal{S}
Let \mathcal{K} denotes subclasses of \mathcal{S} of univalent convex functions $h(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n} \in \mathcal{A}$ satisfying the condition
$R e \frac{\left(\left(z h^{\prime}(z)\right)\right.}{h^{\prime}(z)}>0, z \in \mathbb{E}$.
A function $f(z) \in \mathcal{A}$ is said to be close to convex if there exist $g(z) \in \mathrm{S}^{*}$ such that
$R e \frac{\left(\left(z f^{\prime}(z)\right)\right.}{g(z)}>0, z \in \mathbb{E}$.
The class of close to convex functions introduced by Kaplan [17], and he proved that close to convex functions are univalent.

$$
\begin{equation*}
\mathrm{S}^{*}(\mathrm{~A}, \mathrm{~B})=\left\{f(z) \in \mathcal{A} ; \frac{\left(\left(z f^{\prime}(z)\right)\right.}{g(z)}<\frac{1+\mathrm{Az}}{1+\mathrm{Bz}},-1 \leq B \leq A \leq 1, z \in \mathbb{E}\right\} \tag{1.4}
\end{equation*}
$$

Where $\mathrm{S}^{*}(\mathrm{~A}, \mathrm{~B})$ is a subclass of S^{*}.
For strongly alpha quasi-convex functions Fekete-Szegö problem was studied by Abdel-Gawad [3]. The upper bound of $\mid a_{3}-$ $\mu a_{2}^{2} \mid$ for different functions in the class S has been investigated by many authors including Goel and Mehrok [13] and recently by Al-Shaqsi and Darus [4] Hayami and Owa [16], Al-Abbadi and Darus [10].
Gurmeet singh et al. [3] introduced the class of inverse Starlike functions
$\mathrm{g}(\mathrm{z})=\mathrm{z}+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathrm{~A}$ satisfying the condition
$\operatorname{Re}\left(\frac{z f(z)}{2 \int_{0}^{2} f(z) d z}\right)>0, z \in E \quad$ i.e. $\frac{z f(z)}{2 \int_{0}^{z} f(z) d z}<\frac{1+z}{1-z}$
Gandhi et al. [14] established a new class of analytic functions with Fekete-szego inequality using subordination method. Here introduce the class \mathcal{A}, of Univalent starlike functions $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{A}$ satisfying the condition
$\left[\frac{z\{z f(z)\}^{\prime}}{2 f(z)}\right]<\left(\frac{1+z}{1-z}\right)^{\alpha} ; \alpha>0$
And subclass consisting of the functions $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{A}$
satisfying the condition
$\left[\frac{z\{z f(z)\}^{\prime}}{2 f(z)}\right]<\left(\frac{1+\mathrm{Az}}{1+\mathrm{Bz}}\right)^{\alpha} ;-1 \leq B \leq A \leq 1 ; \alpha>0$
Here, Symbol $<$ stands for subordination, defined as follows:

A. Principle of Subordination

If $f(z)$ and $F(z)$ are two functions which are analytic in \mathbb{E}, then $f(z)$ is called a subordinate to $F(z)$ in \mathbb{E}, if there exists a function $w(z)$ which is analytic in \mathbb{E} satisfying the conditions
(i) $w(0)=0 \quad$ and \quad (ii) $|w(z)|<1$
such that $f(z)=F(w(z))$, where $z \in \mathbb{E}$ and we denote it as $f(z) \prec F(z)$.
Let \mathcal{U} denote the class of analytic bounded functions of the form
$w(z)=\sum_{n=1}^{\infty} d_{n} z^{n}, w(0)=0,|w(z)|<1$
With $\left|d_{1}\right| \leq 1,\left|d_{2}\right| \leq 1-\left|d_{1}\right|^{2}$.

II. RESULTS AND DISCUSSION

1) Theorem 1: If $f(z) \in \mathcal{A}$, then the result
$\left|\boldsymbol{a}_{3}-\mu \boldsymbol{a}_{2}^{2}\right| \leq\left\{\begin{array}{lr}10 \alpha^{2}-16 \mu \alpha^{2} & \text {, if } \mu \leq \frac{5 \alpha-1}{8 \alpha} \\ 2 \alpha & , \text { if } \frac{5 \alpha-1}{8 \alpha} \leq \mu \leq \frac{5 \alpha+1}{8 \alpha} \\ 16 \mu \alpha^{2}-10 \alpha^{2} & \text {, if } \mu \geq \frac{5 \alpha+1}{8 \alpha}\end{array}\right.$
is sharp.
Proof: By using expantion method (1.7) leads to
$1+\frac{1}{2} \boldsymbol{a}_{\mathbf{2}} \boldsymbol{z}+\left(\boldsymbol{a}_{\mathbf{3}}-\frac{1}{2} \boldsymbol{a}_{\mathbf{2}}^{\mathbf{2}}\right) z^{2}+\cdots--=1+2 \alpha c_{1} z+2 \alpha\left(c_{2}+\alpha c_{1}^{2}\right) z^{2}+\cdots--$
After Identifying the terms we have
$\left|\boldsymbol{a}_{3}-\mu \boldsymbol{a}_{2}^{2}\right| \leq\left|2 \alpha c_{2}+10 \alpha^{2} c_{1}^{2}-16 \mu \alpha^{2} c_{1}^{2}\right|$
This leads to
$\left|a_{3}-\mu a_{2}^{2}\right| \leq 2 \alpha+\left[\left|10 \alpha^{2}-16 \mu \alpha^{2}\right|-2 \alpha\right]\left|c_{1}\right|^{2}$
Case I: If $\mu \leq \frac{5}{8}$, then (1.14) leads to
$\left|a_{3}-\mu a_{2}^{2}\right| \leq 2 \alpha+\left[\left(10 \alpha^{2}-2 \alpha\right)-16 \mu \alpha^{2}\left|c_{1}\right|^{2}\right.$
Subcase I(a): If $\mu \leq \frac{5 \alpha-1}{8 \alpha}$, then (1.15) leads to

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq 10 \alpha^{2}-16 \mu \alpha^{2} \tag{1.16}
\end{equation*}
$$

Subcase I(b): If $\mu \geq \frac{5 \alpha-1}{8 \alpha}$, then (1.15) leads to
$\left|a_{3}-\mu a_{2}^{2}\right| \leq 2 \alpha$
Case II : If $\mu \geq \frac{5}{8}, \quad$ then (1.14) leads to
$\left|a_{3}-\mu a_{2}^{2}\right| \leq 2 \alpha+\left[16 \mu \alpha^{2}-\left(10 \alpha^{2}+2 \alpha\right)\right]\left|c_{1}\right|^{2}$
Subcase II(a): If $\mu \leq \frac{5 \alpha+1}{8 \alpha}$, then (1.18) leads to
$\left|a_{3}-\mu a_{2}^{2}\right| \leq 2 \alpha$
Subcase II(b): If $\mu \geq \frac{5 \alpha+1}{8 \alpha}, \quad$ then (1.18) leads to
$\left|a_{3}-\mu a_{2}^{2}\right| \leq 16 \mu \alpha^{2}-10 \alpha^{2}$
Combining subcase $\mathrm{II}(\mathrm{a})$ and subcase $\mathrm{I}(\mathrm{b})$, we get

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq 2 \alpha \quad, \quad \text { if } \frac{5 \alpha-1}{8 \alpha} \leq \mu \leq \frac{5 \alpha+1}{8 \alpha} \tag{1.20}
\end{equation*}
$$

This completes the theorem, therefore the result is sharp.
Extremal function for the first and third inequality is given by

$$
\begin{equation*}
f_{1}(z)=\frac{z}{(1-\alpha z)^{4}} \tag{1.22a}
\end{equation*}
$$

And Extremal function for the second inequality is given by

$$
\begin{equation*}
f_{2}(z)=\frac{z}{\left(1-\alpha z^{2}\right)^{2}} \tag{1.22b}
\end{equation*}
$$

2) Theorem 2: If $\boldsymbol{f}(\mathbf{z}) \in \mathcal{A}$, then the result
$\left|a_{3}-\mu a_{2}^{2}\right| \leq$

$$
\left\{\begin{array}{l}
(A-B)(2 A-3 B) \alpha^{2}-4 \mu \alpha^{2}(\mathrm{~A}-\mathrm{B})^{2} \quad, \text { if } \mu \leq \frac{(2 A-3 B) \alpha-1}{4(A-B) \alpha} \tag{1.23a}\\
(A-B) \alpha \quad, \text { if } \frac{(2 A-3 B) \alpha-1}{4(A-B) \alpha} \leq \mu \leq \frac{(2 A-3 B) \alpha+1}{4(A-B) \alpha} \\
4 \mu \alpha^{2}(\mathrm{~A}-\mathrm{B})^{2}-(A-B)(2 A-3 B) \alpha^{2}
\end{array} \quad, \text { if } \mu \leq \frac{(2 A-3 B) \alpha+1}{4(A-B) \alpha} .\right.
$$

is sharp.
Proof: By using expantion method (1.8) leads to
$1+\frac{1}{2} a_{2} z+\left(a_{3}-\frac{1}{2} a_{2}^{2}\right) z^{2}+\cdots--=1+(\mathrm{A}-\mathrm{B}) \alpha c_{1} z+(\mathrm{A}-\mathrm{B}) \alpha\left(c_{2}-B \alpha c_{1}^{2}\right) z^{2}+\cdots-$
After Identifying the terms in (1.24) we have
$\left|a_{3}-\mu a_{2}^{2}\right| \leq\left|(\mathrm{A}-\mathrm{B}) \alpha\left(c_{2}-B \alpha c_{1}^{2}\right)+2(\mathrm{~A}-\mathrm{B})^{2} \alpha^{2} c_{1}^{2}-4 \mu(\mathrm{~A}-\mathrm{B})^{2} \alpha^{2} c_{1}^{2}\right|$
This leads to
$\left|a_{3}-\mu a_{2}^{2}\right| \leq(\mathrm{A}-\mathrm{B}) \alpha+\left\{\left|2(\mathrm{~A}-\mathrm{B})^{2} \alpha^{2}-B(A-B) \alpha^{2}-4 \mu(\mathrm{~A}-\mathrm{B})^{2} \alpha^{2}\right|-(\mathrm{A}-\mathrm{B}) \alpha\right\}\left|c_{1}\right|^{2}$
here two cases arise:
Case I: If $\mu \leq \frac{2 A-3 B}{4(A-B)}, \quad$ then (1.25) leads to
$\left|a_{3}-\mu a_{2}^{2}\right| \leq(\mathrm{A}-\mathrm{B}) \alpha+\left[(\mathrm{A}-\mathrm{B})\{(2 \mathrm{~A}-3 \mathrm{~B}) \alpha-1\} \alpha-4 \mu(\mathrm{~A}-\mathrm{B})^{2} \alpha^{2}\right]\left|c_{1}\right|^{2}$
Under this case (1.26) two subcases arise:
Subcase I(a): If $\mu \leq \frac{(2 A-3 B) \alpha-1}{4(A-B) \alpha}$, then (1.26) leads to

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{(\mathrm{A}-\mathrm{B})(2 \mathrm{~A}-3 \mathrm{~B}) \alpha-4 \mu(\mathrm{~A}-\mathrm{B})^{2} \alpha^{2}\right. \tag{1.27}
\end{equation*}
$$

Subcase I(b): If $\mu \geq \frac{(2 A-3 B) \alpha-1}{4(A-B) \alpha}$, then (1.26) leads to
$\left|a_{3}-\mu a_{2}^{2}\right| \leq(\mathrm{A}-\mathrm{B}) \alpha$
Case II: If $\mu \geq \frac{2 A-3 B}{4(A-B)}$, then (1.25) leads to
$\left|a_{3}-\mu a_{2}^{2}\right| \leq(\mathrm{A}-\mathrm{B})+\left[4 \mu(\mathrm{~A}-\mathrm{B})^{2} \alpha^{2}-(\mathrm{A}-\mathrm{B})\{(2 \mathrm{~A}-3 \mathrm{~B}) \alpha+1\} \alpha\right]\left|c_{1}\right|^{2}$
Under this case again two subcases arise:
Subcase II(a): If $\mu \leq \frac{(2 A-3 B) \alpha+1}{4(A-B) \alpha}$, then (1.29) leads to
$\left|a_{3}-\mu a_{2}^{2}\right| \leq(\mathrm{A}-\mathrm{B}) \alpha$
Subcase II(B): $\mu \geq \frac{(2 A-3 B) \alpha+1}{4(A-B) \alpha}$, then (1.29) leads to

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{4 \mu(\mathrm{~A}-\mathrm{B})^{2} \alpha^{2}-(A-B)(2 A-3 B) \alpha^{2}\right. \tag{1.31}
\end{equation*}
$$

Combining subcase $\mathrm{II}(\mathrm{a})$ and subcase $\mathrm{I}(\mathrm{b})$, we get

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq(\mathrm{A}-\mathrm{B}) \alpha \quad, \text { if } \frac{(2 A-3 B) \alpha-1}{4(A-B) \alpha} \leq \mu \leq \frac{(2 A-3 B) \alpha+1}{4(A-B) \alpha} \tag{1.32}
\end{equation*}
$$

This completes the theorem therefore, the result is sharp.
Extremal function for the first and third inequality is given by

$$
\begin{equation*}
f_{1}(z)=z\left\{1+\left(\frac{2 A-2 B}{2 A-3 B}\right) z \alpha\right\}^{2 A-3 B} \tag{1.33a}
\end{equation*}
$$

And for the for second inequality is given by

$$
\begin{equation*}
f_{2}(z)=\frac{z}{\left(1-\alpha z^{2}\right)^{A-B}} \tag{1.33b}
\end{equation*}
$$

III. CONCLUDING REMARKS AND COROLLARIES

1) Corollary 1.1: Taking $\alpha=1$ in the theorem 1, we get

$$
\left|\boldsymbol{a}_{3}-\mu \boldsymbol{a}_{2}^{2}\right|_{\leq}\left\{\begin{array}{lr}
10-16 \mu & \text {, if } \mu \leq \frac{1}{2} \tag{1.34}\\
2 & , \text { if } \frac{1}{2} \leq \mu \leq \frac{3}{4} \\
16 \mu-10 & , \text { if } \mu \geq \frac{3}{4}
\end{array}\right.
$$

These estimates were derived by Keogh and Merkes [1] and the results are for the class of univalent convex functions.
Further if we take $\mathrm{A}=1$ and $\mathrm{B}=-1(-1 \leq B \leq A \leq 1)$ in the result of theorem 2 , we get the result of theorem 1 , therefore our result for the theorem 2 reduces to the result of the theorem1. Hence theorem 2 is the generalization of theorem 1 . And the results are sharp and also if we put $\mathrm{A}=1$ and $\mathrm{B}=-1$ in extremal function of theorem 2, we get the extremal function of theorem 1 . The extremal function given by [(1.22a),(1.22b)] increases as α increases and decreases as α decreases and the extremal function given by $[(1.33 a),(1.33 b)]$ also increases and decreases as α increases and decreases respectively. Hence extremal function is an increasing function.

REFERENCES

[1] F. R. Keogh, E. R.Merkes, "A coefficient inequality for certain classes of analytic functions", Procedure of American Mathematical Society, 20, 8 (1989)
[2] Gurmeet Singh, M. S. Saroa and B. S.Mehrok, "Fekete-szegö inequality for a new class of analytic functions", Elsevier, Proc. of International conference on Information and Mathematical Sciences, 90 (2013)
[3] H. R.Abdel-Gawad, D.K. Thomas ,"The Fekete-Szegö problem for strongly close-to-convex functions" Proceedings of the Amercian Mathematical Society, vol. 144, no. 2 345(1992)
[4] K. Al-Shaqsi, M.Darus , "On Fekete-Szegö problems for certain subclass of analyticFunctions", Applied Mathematical Sciences, vol. 2 no. 9-12,pp. 431(2008)
[5] K. Löwner, "Uber monotone Matrixfunktionen", Math. Z 38, 177 (1934).
[6] Kunle Oladeji Babalola, "The fifth and Sixth coefficient of α-close- to -convex function", Kragujevac J. Math. 32, 5 (2009)
[7] L. Bieberbach, "Uber einige Extremal Probleme im Gebiete der Konformen Abbildung" Math. 77, 153 (1916)
[8] L. Bieberbach, "Uberdie Koeffizientem derjenigem Potenzreihen, welche eine Schlithe Abbildung des Einheitskrises Vermittelen", Preuss. AKad. Wiss Sitzungsb. 940 (1916)
[9] M.Fekete, G.Szego, "Eine Bemerkung Uber ungerade Schlichte Funktionen", J. London Math. Soc. 8 , 85 (1933)
[10] M. H. Al-Abbadi, M.Darus , "Fekete-Sezegö theorem for a certain class of analytic functions", Sanis Malaysiana, vol. 40, no. 4, 385(2011)
[11] P. N. Chhichra, "New Subclasses of the class of close to convex functions", Procedure of American Mathematical Society, 62, 37 (1977)
[12] R.M. Goel , B. S. Mehrok, "A Subclass of Univalent functions", Houston Journal of Mathematics 8, 343 (1982)
[13] R.M. Goel, B. S. Mehrok, "A coefficient inequality for certain classes of analytic function", Tamkang Journal of Mathematics 22, 153 (1990)
[14] S. K. Gandhi, Gurmeet Singh, Preeti Kumawat, G. S. Rathore and Lokendra Kumawat, "A new class of analytic functions with Fekete-Szego Inequality using subordination Method",International journal of research in advent technology, vol. 6, no. 9,(2018)
[15] S. R. Keogh, E. R. Merkes, "A coefficient inequality for certain classes of analytic functions", Proceedings of the American Mathematical Society. Vol. 20, 8 (1969)
[16] T. Hayami, S. Owa and H. M. Srivastava, "Coefficient inequalities for certain classes of analytic and univalent functions", J. Ineq. Pure and Appl. Math. 8(4), 1 (2007)
[17] W. Kaplan, "Close -to-convex schlicht functions", Michigan Mathematical Journal 1, 169 (1952)

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

