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Abstract: In this work, Friction Stir Welding (FSW) of 2017A-T451 aluminum alloy for a constant tool rotational speed 
1250 rpm is investigated and analyzed. 3D numerical simulation has been carried out with the aid of ANSY code. In this 
context, two steps are performed; a mesh system is adapted to the geometry (plaque and tool) in order to use the finite ele-
ments. Secondly; the predicted result of plate temperature has been compared to experimental result. The surface tempera-
ture of the plate increases with the passage of the rotating tool; this is due to the increasing of friction between the tool and 
plate. This increase is slow until 300 s then it decreases rapidly. A good agreement is noted between the experimental and 
predicted results. According to this result, ANSYS provides a satisfactory prediction for the FSW. 
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I. INTRODUCTION 
The use of the FSW for the assembly of aluminum alloy structures has many attractions for the industry especially the aero-
nautics constructions [1].  This assembly is released by friction and kneading of the material of the sheets to be welded without 
the additional material and without employ an external heat source in contrast to traditional welding techniques such as arc 
welding and Laser welding [2]. The FSW process is especially suited to aluminum alloys and other metal alloys known to be 
difficult to weld with conventional methods.   
The welding with FSW is carried out without reaching the melting temperature of the base metal which is not achievable with 
the usual welding processes [3]. Indeed, during FSW welding, the surface temperature in the materials is much lower than the 
melting temperature [4].  
This makes it possible to obtain a quality of welding which is clearly superior to other techniques [5]. Zadpoor et al. [6] and 
Ericsson et al. [7] found that the FSW joint remains higher than that of the conventional fusion weld joints. This was affirmed 
by the study of Yong et al. [8] who establish a conclusion that a higher exhaustion in the FSW joints compared to that of Metal 
Inert Gas weld joint. 
In this respect, the FSW remains a complex phenomenon, for that we need to study the thermal behavior of the combined sys-
tem tool-plate, because the welding temperature affects the quality and efficiency of welding [9]. Moreover, it is very difficult 
to perceive of the joint during the forming process [10].  
However, the numerical simulation overcome this problem by providing an effective way to analyze closely the FSW procedure 
[11-12]. In this context, Prasanna et al. [13] has analyzed the thermo-mechanical of the aluminum Alloys with zinc as the pri-
mary alloying element (7075-T651) this process is carried out using the finite element code by.  
On the other hand, Cavaliere et al [14] and Colegrove et al. [15] studied the effect of the Tool Geometries on Thermal Analysis 
of the Friction Stir Welding 
 This article aims to investigate and analyze numerically the FSW, including welding processes, temperature distribution and 
residual stresses.  
The predicted surface temperature is compared with the experimental work of Mimouni et al [16]. The mesh procedure and the 
boundary conditions are discussed. FSW's numerical simulation simulates the FSW welding process to predict the various pa-
rameters of the system. The contours of temperature and constraints of Von Mises are discussed and illustrated by a case study. 
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II. MATERIAL AND GEOMETRY 
In this section, the approach used for the numerical simulation of the FSW process is presented. Two steps are elaborate to re-
lease this study; firstly, a mesh system is adapted to the geometry (plaque and tool). Two rectangular shaped plates are used as 
parts to be welded is illustrated in the figure 1. The dimensions have been reduced to reduce the simulation time. The size of 
the plates is identical 250 x 100 x 4 (mm3). 
The diameter of the shoulder of the tool is 22mm. The size of the tool is equal to the diameter of the shoulder.  
The thermal and mechanical properties of plate 2017A- T451 are summarized in the Table 1 and Table 2 [16]. 

Table 1. Mechanical properties of 2017A plate 
 
 
 
 
 
 

Table 2. Thermal properties of 2017A 

 

 
 
 
 

 
While, the mechanical characteristics of the tool used in this process is presented in Table 3 [16]. 

Table 3. The properties of steel (Tool) 
 

 
 
 
 
 
 
 
A. Computational Grid 
In order to release the numerical simulation of the FSW, a mesh is adapted to resolve the finite element method. The element 
used for the simulation of the plates and the tool is the element SOLID226 used for the simulation of coupled phenomena 
(structural-thermal) (Figure 2). 

 
Fig.2.  Finite element SOLID226. 
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Properties Values 

E (MPa) 193e9 
μ 0.3 

λ (W/m°C) 16 
Cp (J/kg°C) 500 
ρ (kg/m3) 7480 
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A hexahedron mesh is carried out instead of a tetrahedral mesh to avoid dependence on the direction of the mesh12. For more 
accurate results, a finer mesh is used in the area of the weld line as shown in the Figure 3.  

 
Fig 3.  Meshing of the two plates and FSW tool 

Secondly, a direct coupled ANSY solver is executed to analysis the phenomena the in the second step. 

III. BOUNDARY CONDITIONS 
To perform this simulation, it needs a boundary conditions such as thermal boundary conditions and mechanical boundary 
Conditions. 

A. Thermal Boundary Conditions 
The thermal condition is illustrated in the figure 4. Convection describes the heat loss to the environment. Conduction losses 
also occur on the underside of the plates.  
Equation (1) describes the steady-state heat transfer in the plate where a convective term (right-hand side) is included to ac-
count for the effect of material movement 

∇. (푘∇푇) +푞=휌퐶푝푉푇. ∇푇                                 (1) 
q represents the rate of heat source per volume; VT is the welding (transverse) speed. 
The model simulates the heat dissipation due to the interaction among the tool’s pin and shoulder with the workpiece (surface 
heat of friction and volumetric heat of deformation) as a surface heat flux (space mapping) in the tool pin and shoulde[15]: 

 Q (T) = ( )
 푟  휔푌 (푇)       ∶ 푇  <     푇   

0 ∶ 푇 > 푇
 (2)    

Q (W/m2) is the pin heat flux and μ is the friction coefficient between the pin and the workpiece, rp denotes the pin radius, ω 
refers to the pin’s angular velocity (rad/ s), and 푌(푇) is the average shear yield stress of the material as a function of tempera-
ture. 

B. Mechanical Boundary Conditions  
The object is now fixed in each plate. The retained parts (plates) are blocked in all directions. To simulate pressing the lower 
surfaces of the plates, all lower nodes of the object are stuck in the perpendicular direction (z direction) is presented in Figure 
5. 

 
Fig 5.  Mechanical boundary conditions 
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C. Welding Conditions 
The FSW process consists of three primary phases as Follow [17]. 
1) Plunge Phase: the rotating tool slowly into the material until the shoulder of the tool touches the material. 
2) Moving Phase: turning tool moves along the weld line. During this phase, there's a rise in temperature after the welding 

line, but the maximum temperature values do not exceed the melting temperature of the metal  
3) Shrinkage Phase: This phase is characterized by the end of the welding operation and the shrinkage of the tool from the 

material. 
These phases described above are summarized in the Table 4. 

Table 4. Welding conditions 
Step Time 

(s) 
Conditions Speed 

1 2 Plunge ω= 1250 rpm 
2 15 Moving V= 5 mm/s 
3 25 Shrinkage / 

IV. RESULTS AND DISCUSSION 
A. Model Evaluation 
Figure 6 show the temperature evolution of depending on the welding time. A good agreement is noted between the experi-
mental and predicted results. The temperature of the plate increases with the passage of the welding tool. i.e. increasing of fric-
tion between the tool and plate. This increase is slow until 300 s then it decreases rapidly.  
According to this result ANSYSprovides a satisfactory prediction for the temperature. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig 6. Comparaison of  predicted and experimenntal temperature evolution according to welting time 

B. Temperature Distribution  
The results of the numerical simulation for the second and third phases of the process are respectively shown in Figures 7 a-b. 
The distribution of the temperature field under the FSW tool increases then decreases to reach low values away from the tool.  
The maximum temperature on the welding line is of the order of 416 ° C. at the end of the third phase (Figure. 7.b), whereas 
this temperature is lower than the melting temperature of the indicated aluminum at 620 ° C. In addition, the heat generated on 
the plate is due to mechanical loads (friction). This condition clearly shows the pasty state reached by aluminum at this temper-
ature. We note that no external heat source is used. 
Indeed, a control of the load exerted (coefficient of friction) on the plate by the tool was carried so that the temperature of the 
plate does not exceed the melting temperature of the aluminum. Indeed, the temperature increases, the material softens, and the 
coefficient of friction decreases. 
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After the analyses, the heating observed in this model asserts that the generation of heat during the welding operation is due to 
the friction between the tool shoulder and the part to be welded. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 7. Distribution of temperatures at the second phase (a) and third phase (b) 

C. Von Mises Constraints 
The figure 8 a-b show the distribution of the equivalent Von Mises stresses. The stresses are mainly located in the weld bead 
(core) and its vicinity (ZATM, ZAT). It is noted that the maximum value of the Von Mises stresses has reached 317 Mpa, 
which is far away of the breakdown value of aluminum 2017-T451 (475 Mpa). This concentration is essentially over the zone 
of the nucleus where it has a maximum mixing of the material and this value diminishes as one moves away from the mixing 
zone until reaching a value of 141Mpa. 
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Figure 8. Von Mises Constraints distribution at the second phase (a) and third phase (b) 

V. CONCLUSION 
The implementation in the finite element code ANSYS thermo-mechanical model taking into account the welding parameters 
(tool geometry, plate thickness, speed, feed rate, plunge effort and type of material to be welded) was performed. The study on 
contact management has helped to highlight the difficulties in choosing the type of contact. However, it seems that for the 
warming, the nodal contact would be more appropriate than the surface contact.  
The tool rotational speed during friction stirs welding of the investigated alloy affect significantly the weld joint temperature.  
Furthermore, computer simulations can predict the temperature fields for acceptable computation times from a material point of 
view. These results are comparable to those obtained experimentally. The set of results obtained seem to agree well with the 
numerical and experimental data already published, in particular the temperature distribution. 
However, other studies, carried out using an E.F. code based on fluid mechanics are required to predict the quality of the weld 
through the study of the flow of material around the tool. The use of different programs according to the nature of the desired 
results is now essential to treat different physical phenomena caused by the F.S.W. welding operation (Temperature field, de-
formation). 
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