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Abstract: Clustering is process of having similar items at one place. Many datasets are available for the research in clustering. 
Machine learning (ML) and deep learning (DL) are two latest domains that to improve the clustering techniques. From past 
decade so many applications are developed in clustering for pattern recognition, speech and other prediction type of algorithms. 
According to the latest research, deep clustering algorithms can be used to learn better representations of the data. In this paper, 
the Ensemble Mixed Breed Deep Clustering Algorithm (EMBDCA) which is adopted various deep learning algorithms for 
improving the performance. For the training, Information Maximizing Self-Augmented Training (IMSAT) is utilized. This will 
improve the accuracy especially for the datasets such as mushroom and MIST dataset. The parameters sensitivity, specificity and 
quality of clusters are also improved. 
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I.  INTRODUCTION 
Clustering algorithms will be reliant on the variety of the input information provided, such that various datasets could require 
diverse similarity measures and distinctive separation methods. Therefore, dimensionality decrease and portrayal learning have been 
widely utilized nearby grouping, so as to outline input information into a component space where partition is simpler regarding the 
issue's unique circumstance. Utilizing deep neural networks (DNNs), it is conceivable to learn non-direct mappings permitting to 
change the information into all the more clustering-friendly representations. Clustering, one of the principal territories in AI targets 
ordering unlabeled information into gatherings (clusters). A promising course in profound learning exploration is to learn portrayals 
and at the same time find cluster structure in unlabeled information by enhancing a discriminative misfortune work. Deep 
Embedded Clustering (DEC) [2] epitomizes this profession and speaks to, as far as we could possibly know, the cutting edge. DEC 
depends on an improvement methodology wherein a neural system is pertained by methods for an auto encoder and afterward 
tweaked by mutually upgrading bunch centroids in yield space and the fundamental component portrayal. Another model is [3], 
where the creators propose a joint enhancement for dimensionality decrease utilizing a neural system and k-implies grouping. 
Different ways to deal with single deep learning dependent on antagonistic systems have as of late been proposed [4]. These 
methodologies are distinctive in soul however can likewise be utilized for clustering. 

II.  RELATED WORK 
Clustering techniques that consider the linkage between information focuses, generally known as various leveled strategies, can be 
subdivided into two gatherings: agglomerative and troublesome. In an agglomerative progressive grouping calculation, at first, each 
item has a place with a particular individual bunch. At that point, after progressive emphases, bunches are converged until stop 
conditions are come to. Then again, a troublesome various leveled bunching strategy begins with all articles in a solitary group and, 
after progressive cycles, objects are isolated into bunches. There are two principle bundles in the R language that give schedules to 
performing various leveled grouping, they are the details and bunch. Here we consider the agnes routine from the bunch bundle 
which actualizes the calculation proposed. Four understood linkage criteria are accessible in agnes, specifically single linkage, 
complete linkage, Ward's strategy, and weighted normal linkage.  Clustering is a great data preparing issue, especially significant in 
AI [5, 6, 7, 8, 9]. Endless methodologies exist for clustering, with mean move, k-means and desire augmentation calculations [10], 
being probably the most outstanding ones. In the most recent decade, unearthly grouping assumed a noticeable job in the field, see 
for example [11-15]. Spectral clustering misuses the range of closeness lattices to parcel input information. In spite of the fact that 
these strategies have exhibited great execution in complex issues, they experience the ill effects of absence of adaptability as for the 
quantity of info information focuses; cubic computational multifaceted nature for Eigen solvers and quadratic intricacy as far as 
memory occupation. Endeavours to take care of these issues have been made by planning approximations or utilizing various 
advancement methods. 
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III.  DATASET DESCRIPTION 
A. Mushroom Dataset 
It is one of the most popular data set contains total of 8124 training occurrences, among them each occurrence represents single 
mushroom. The first attribute is the target variable containing the label names used to recognize whether the mushroom is belongs to 
edible or poisonous group.   

B. MNIST Dataset 
This data set contains set of handwritten digits, contains total of 60,000 training occurrences available and 10000 examples will be 
considered as test set. All the hand written digits are normalized. 
 

IV.  INFORMATION MAXIMIZING SELF-AUGMENTED TRAINING (IMSAT) 
It represents the data using information maximization between input and cluster assignment. It proposes Self Augmentation 
Training, which penalizes representation dissimilarity between the original data points and augmented ones, T(x). 

 
It combines mutual information constraint along with SAT scheme to define objective function as: 

 
 
A. The Ensemble Clustering Algorithm 
Input: H (1)... H (r), r basic partitions 
L represented as layer count 
p: Considered Noise Level 
K: Cluster size 
Output: optimal H* 
1) Initially Construct the Binary Matrix (B)  
2) Obtain Mapping Matrix W by applying layered stacked EMDCA by taking noise level p. 
3) : Apply K-means algorithm on BWT to obtain H* 

V.  PERFORMANCE EVOLUTION 
Based on the proposed algorithm to analyze the performance of the system use various measures Accuracy, purity of the cluster etc., 
the fundamental count values available in the confusion matrix such as True Positive (TP), True Negative (TN), False Positive (FP) 
and False Negative (FN) are used to estimate the measures 

A. False Positive Rate (FPR)  
The fractional amount cases it will be classified as correct, but it is wrong.  

 

B. False Negative Rate (FNR)  
The fractional amount of cases it will be classified as wrong, but it is correct. 

 

C. Sensitivity  
The fractional amount of actual positive values which are successfully identified. 
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D. Specificity  
The fractional amount of actual negative values which are successfully identified 

 
Accuracy: This will calculate the overall accuracy of the clusters. 

 

E. Normalized Mutual Information (NMI) 
NMI is also called data theoretic parameter which calculates the mutual data between the ground truth labels and cluster 
assignments. This is normalized based on average of entropy of both ground labels and the cluster assignments. The formula to 
calculate the NMI score for the mushroom and MIST datasets is.  

 
The implementation is done with IMSAT is used for the training of the dataset to improve the performance. By using Java 
programming language which performs better to get the results. EMBDCA utilized the mushroom dataset and the MNIST database 
of handwritten digit datasets is used. The performance of the four algorithms is compared.  

VI.  RESULTS OF SEGMENTATION EVALUATION 
The mushroom data set represented in the following figure:2 it contains set of training examples, it is available in comma separated 
value format. 

 
Figure: 2, Sample Mushroom dataset 

The following table discuss about the results compared with EM-GMM, Mixed Breed. 

Cluster-1 Accuracy Sensitivity Specificity No of records 
in this cluster 

Quality Purity NMI 

EM-GMM 0.99768 0.99 0.96 0.51 0.87 0.67 - 
Mixed Breed 0.99987 0.99987 0.98 0.61 0.97 0.96 - 
EMBDCA 0.9999 0.999 0.99 0.87 0.98 0.98 0.99 

Table: 1, In Cluster-1 performance for the mushrooms are belongs to edible. 
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     Cluster-2 Accuracy Sensitivity Specificity No of 
records in 
this 
cluster 

Quality Purity NMI 

EM-GMM 
Clustering 

0.9976 0.9943 0.96 0.48 0.87 0.89 - 

Mixed Breed 0.9997 0.9994 0.98 0.49 0.97 0.96 - 
EMBDCA 0.9999 0.999 0.99 0.68 0.98 0.98 0.99 

Table: 2, in cluster-2 all the mushrooms are belongs to poisonous. 
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Figure: 3 Performance graph representation for edible (Cluster-1) records in mushroom dataset. 
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Figure: 4 Performance graph representation for poisonous (Cluster-2) records in mushroom dataset. 

 
Figure: 5 Examples of MNIST dataset 
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Evolution results on MIST hand written dataset 
 Accuracy Sensitivity Specificity No of records in 

this cluster 
Cluster-1 (Number 
0) 

0.99 0.97 0.98 0.432 

Cluster-2 
(Number 1) 

0.99 0.98 0.97 0.453 

Cluster-3 
(Number 2) 

0.99 0.99 0.98 0.543 

Cluster-4 
(Number 3) 

0.99 0.94 0.95 0.654 

Cluster-5 
(Number 4) 

0.99 0.98 0.98 0.453 

Cluster-6 
(Number 5) 

0.99 0.9998 0.96 0.675 

Cluster-7 
(Number 6) 

0.99 0.9967 0.97 0.567 

Cluster-8 
(Number 7) 

0.98 0.9786 0.96 0.568 

Cluster-9 
(Number 8) 

0.98 0.9909 0.96 0.5654 

Cluster-10 
(Number 9) 

0.97 0.97 0.97 0.5654 

Table: 3 Show the performance of the clusters for handwritten dataset 0-9 

The EMBDCA outcomes of clustering of data are presented by our proposed work. The comparison between to our EM-GMM 
clustering, MBC, EMBDCA in this comparison our proposed technique will give very high accuracy values for clustering of data. 
Among the two existing clustering algorithm the EMBDCA performs well based on the parameters such as sensitivity, specificity, 
accuracy, purity, quality and NMI. 

VII.  CONCLUSION 
In this paper, the EMBDCA is the ensemble approach which performs well compare with the other existing clustering algorithms. 
IMSAT is utilized to make the clustering process easy and improves the accuracy and NMI score by using the training algorithm. 
After training algorithm, the proposed EMBDCA process the data original data and forms the clusters based on various parameters 
discussed in above section. This is also considered the complexity and compatibility of the algorithm weather it is fit for the 
processing of mushroom and MINST datasets. In future, EMBDCA adopted with big data algorithms to process the mega bytes data 
for clustering. 
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