

7 XI November 2019

http://doi.org/10.22214/ijraset.2019.11104

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

 Volume 7 Issue XI, Nov 2019- Available at www.ijraset.com

©IJRASET: All Rights are Reserved 652

Face Detection and Eye Detection in Image and
Video using Pre-trained HAAR-Cascade Classifier

Mr. Tejas Phase1, Prof. Dr. Suhas S. Patil2

1, 2Dept. of Electronics Engineering, Karmaveer Bhaurao Patil College of Engineering, Satara, India

Abstract: This paper aims to detect the face in the given image and in live video. For this purpose, we are using pre-trained
“Haar Cascade Classifier” to locate face/faces in the image and in live video. But before this, we are doing “Image Processing”
for the purpose of Input Pre-processing. And then Image Enhancement to correct Non-uniform illuminations and then use pre-
trained Cascade-Classifier to locate face/faces and eyes in the image and in live video.
Keywords: Face-detection, Image processing, Image Filtering, Histogram Equalization, HAAR-Cascade Classifier.

I. INTRODUCTION
Human Face Detection is an active area of research include several disciplines such as Digital Image Processing, Image
Enhancement, Edge detection and Computer Vision. Face detection is the first stage in various applications ranges from person’s
identification, video supervision, lips tracing, obtaining face expressions, gender categorization and modern human and machine
interactions. For detection of the face, different face areas such as eyes, nose, mouth and chicks are detected as a feature components
by using template matching technique and then combined them to identify face portion in the given input image [1, 2]. Face
detection falls into a study of Object-Class detection in which the goal is to locate and identify all the objects in the given image.
Face-detection technique focus on the frontal human faces. It is similar to image recognition system in which the image of an object
or person is matched with reference image (in database) bit by bit. This matching of the image is done with reference images that
stores in the image/object database. Any feature data change in the database will fails the matching process [3].
In this paper we demonstrate the detection of the face or faces in an image and in live video with different illumination variations
and angle of the face. For this purpose, we are using pre-trained “Haar Cascade Classifier” to locate face/faces in the image and in
video. But before detection, we perform “Image Processing” for the purpose of Input Pre-processing which include Noise Removal
using “Median Filtering” and Contrast adjustment using Gamma correction”. Then we perform Histogram Equalization to correct
contrast adjustment to get the resultant image suitable for further image analysis. Then perform edge detection and then finally use
the pre-trained Haar Cascade Classifier to detect or locate face/faces in the given image.

II. DESIGN FLOW

Input image (from
Database) or live video

2. Blurring and Smoothing
(Noise treatment)

3. Histogram Equalization
(Contrast Adjustment)

4. Edge
Detection

5. Feature
Matching (optional)

6. Face Detection
using HAAR-Cascade

Classifier

1. Gamma Correction
(Brightness

Enhancement)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

 Volume 7 Issue XI, Nov 2019- Available at www.ijraset.com

©IJRASET: All Rights are Reserved 653

A. Gamma Correction
This method can be applied to an image to make it appear brighter or darker depending on the Gamma value chosen.

Fig. 1. Input Image for Gamma Correction

If we choose gamma value less than 1 then the resulting image is brighter and as we increase the gamma value the resulting image
gets darker and darker.
#Set Gamma value above 1 and view the image:
gamma = 4
#Taking value of each pixel and raises the power with value of gamma.
Result_image = np.power(I,gamma)
disp_img(result_image)

Fig. 2. Output image with Gamma value above 1(less bright)

#Set Gamma value less than 1 and view the image:
gamma = 1/4
#Taking value of each pixel and raises the power with value of gamma.
Result_image = np.power(I,gamma)
disp_img(result_image)

Fig. 3. Output image with Gamma value less than 1(more brighter)

B. Image Blurring (Treatment for Noise Removal)
1) Smoothing an image can help get rid of noise and help a computer vision application to focus on general details.
2) There are many methods of blurring and smoothing. Often blurring and Smoothing combined with edge detection.
3) Edge detection algorithms detect too many edges when shown a high resolution image without any blurring.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

 Volume 7 Issue XI, Nov 2019- Available at www.ijraset.com

©IJRASET: All Rights are Reserved 654

a) Median Blurring

Fig. 4. Input image for inserting noise

b) Injection of Salt and Pepper noise and view the image

Fig. 5. Image after injecting salt & pepper noise

#Apply Median Filter to blur the image for removing the noise:
median_img = cv2.medianBlur(output_image,ksize=5)
plt.title("Image after removing noise")
plt.imshow(median_img)

Fig. 6. Output Image after blurring (removed noise)

C. Histogram Equalization
Histogram Equalization is a method of contrast adjustment based on image's histogram.
1) Histogram Equalization on ‘Gray-scale’ Image

Fig. 7. Input Image for Histogram Equalization

#Calculate histogram values:
hist_values = cv2.calcHist ([gorilla], channels= [0], mask=None,histSize=[256],ranges=[0,256])
#Plot the histogram values:
plt.plot(hist_values)
plt.show ()

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

 Volume 7 Issue XI, Nov 2019- Available at www.ijraset.com

©IJRASET: All Rights are Reserved 655

Fig. 8 Histogram of the Original Image

#Equalize the histogram:
equalize_gorilla = cv2.equalizeHist (gorilla)
#View the image:
display_img(equalize_gorilla,cmap='gray')

Fig. 9. Histogram Equalized Image (Enhanced Contrast)

Calculate histogram values for equalized image:
eq_hist_values = cv2.calcHist ([equalize_gorilla], channels=[0],mask=None,histSize=[256],ranges=[0,256])
#Plot the values:
plt.plot(eq_hist_values)

Fig. 10. Histogram of Equalized Image

2) Histogram Equalization on colour Image

Fig. 11. Input Colour Image

#Convert the image into HSV version(Hue-Saturation-Value)
hsv_image = cv2.cvtColor (color_gorilla,cv2.COLOR_BGR2HSV)
#Get the value channel:
hsv_image[:,:,2] = cv2.equalizeHist(hsv_image[:,:,2])
#Convert the HSV image back to RGB image:
eq_color_gorilla = cv2.cvtColor (hsv_image,cv2.COLOR_HSV2RGB)
#Display the image:
display_img (eq_color_gorilla)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

 Volume 7 Issue XI, Nov 2019- Available at www.ijraset.com

©IJRASET: All Rights are Reserved 656

Fig. 12. Equalized colour Image

D. Edge Detection
We are going to perform Edge detection here using “Canny Edge Detector”:
1) Canny Edge Detection Process
a) Apply Gaussian filter to smooth the image in order to remove the noise.
b) Find the intensity gradients of the image.
c) Apply non-maximum suppression to get rid of spurious response to edge detection.
d) Apply double threshold to determine potential edges.
e) Finalize the detection of edges by suppressing all the other edges that are weak and not connected to strong edges.

Fig. 13. Input Image for Edge detection

#Read the image:
#Let's create an object of canny edge detector:
edges = cv2.Canny(image=puppy_img,threshold1=127,threshold2=127)
#Let's view the edges:
plt.imshow(edges)

Fig. 14. Output of Edge Detection (Set threshold to value-127)

#Let's play around some threshold values:
edges = cv2.Canny(image=puppy_img,threshold1=0,threshold2=255)
plt.imshow(edges)

Fig. 15. Output of Edge Detection (Set threshold1=0 and threshold2= to value-255)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

 Volume 7 Issue XI, Nov 2019- Available at www.ijraset.com

©IJRASET: All Rights are Reserved 657

But to play with this like a small child we can use "blurring of the image" instead first and then perform edge detection:
blurred_puppy_img = cv2.blur(puppy_img,ksize=(5,5))
Perform edge detection again:
edges = cv2.Canny(image=blurred_puppy_img,threshold1=lower,threshold2=upper)
plt.imshow(edges)

Fig. 17. Edge detection after blurred the input image

From the above output we can clearly see the strong edges of the dog's face. Let's increase the upper limit by some amount and
check the result:
edges = cv2.Canny(image=blurred_puppy_img,threshold1=lower,threshold2=upper+50)
plt.imshow(edges)

Fig.18. Edge detection after blurred the image as well as set upper threshold value to higher value

E. Face Detection using HAAR-Cascade
#DETECTION OF THE FACE
#Create an Object of Haar-Cascade Classifier:
cascade_class = cv2.CascadeClassifier ("C:/Users/Phase/Downloads/Computer-Vision-with-
Python/DATA/haarcascades/haarcascade_frontalface_default.xml")
#Let's write one function for image input and detect face:
def detect_face(img):
 #Create a copy of the original image:
 face_img = img.copy()
 #Call MultiScale method of classifier:
 face_rects = cascade_class.detectMultiScale(face_img)
 #Draw rectangle around detected face:
 for (x,y,w,h) in face_rects:
 cv2.rectangle(face_img,(x,y),(x+w,y+h),(255,255,255),10)
return face_img
#Let's run our function on any image:
result_img = detect_face(nadia)
#View the image:
plt.imshow (result_img,cmap=’gray’)
plt.show ()

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

 Volume 7 Issue XI, Nov 2019- Available at www.ijraset.com

©IJRASET: All Rights are Reserved 658

Fig. 19. Detection of the Face (in single face image)

1) Detecting Faces In The Group Image

Fig. 20. Detection of the face in multiple faces

2) Detection Of The Face In Live Video Mode

Fig. 21. Detection of the face in live video

3) Detection Of The Eyes In Live Video Mode

Fig. 22. Detection of the eyes in live video

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

 Volume 7 Issue XI, Nov 2019- Available at www.ijraset.com

©IJRASET: All Rights are Reserved 659

III. CONCLUSION
The downside of the face-detection using HAAR-Cascade classifier is that it requires large data sets to create own features. To
minimize this problem we can use deep-learning approach to create our own classification algorithm for distinct group of images.
As opposed to traditional Machine Learning algorithms which typically define sets of pre-programmed features and data and they
work to extract these pre-defined features as a part of their pipeline while in deep learning the deep learning models tries to learn
these features directly from the data as opposed to hand-engineered features by the human. In short, deep learning approach
represents the hierarchical model which is capable of representing different levels of abstraction in the data. This emerging field has
totally changed the research landscape of face recognition (FR) systems, which launched by the breakthroughs of Deep Face
method.

REFERENCE
[1] Md. Iqbal Quraishi, J.P. Choudhury, Mallika De, “Image Recognition and Processing Using Artificial Neural Network”, 1st Int’l Conf. on Recent Advances in

Information and Technology, (2012) , 978-1-4577-0697-4/12.
[2] AMER AL-RAHAYFEH AND MIAD FAEZIPOUR, Member, IEEE, “Eye Tracking and Head Movement Detection: A State-of-Art Survey”, IEEE Trans. In

Transactional Engineering in Health and Medicine, VOLUME 1, pp. 2168-2372, 14 November 2013.
[3] Ming-Hsuan Yang, “Face Detection”, University of California, Merced, CA 95344.
[4] Kurosh Madani, “Artificial Neural Networks Based Image Processing & Pattern Recognition: From Concept to Real-World Applications”, Image, Signal and

Intelligent Systems Laboratory (LISSI / EA 3956), (2008) 978-1-4244-3322-3/08.
[5] “Image noise”, Wikipedia, May 28, 2019
[6] Meftah Ur Rahman, “A comparative study on face recognition techniques and neural network”, Department of Computer Science, George Mason University.
[7] “Feature selection”, Wikipedia, October 13, 2019.
[8] Mehul Ved, Jul 19(2018), “Feature Selection and Feature Extraction in Machine Learning: An Overview”. Retrieved from: https://bit.ly/2NrHKww
[9] “Dimensionality reduction”, Wikipedia, October 02, 2019.
[10] Jian Yang, David Zhang, Senior Member, IEEE, Alejandro F. Frangi, and Jing-yu Yang, “Two-Dimensional PCA: A New Approach to Appearance-Based

Face Representation and Recognition”, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 1,
JANUARY 2004.

