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Case Study for Hollow Tubular Offshore Pile
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Abstract: During the past centuries, the using of offshore piles has increased because of the progressive elaboration that has
been happened in the civil and coastal engineering industry in offshore fields. This paper is discussing a case study for design of
an axial pile, the theoretical capacity of the mono pile and measure the actual capacity of the pile. The location of the execution
of the pile driving was in was in Hamriyah port located in Sharjah, UAE.
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I. INTRODUCTION
The location of the execution of the pile driving was in was in Hamriyah port located in Sharjah, UAE. The pile driving activity was
part of rehabilitation project for a liquefied natural gas terminal. This case study paper is measuring the variance between the
theoretical and actual axial bearing capacity of the hollow tubular pile.

Il. ENVIRONMENTAL AND DESIGNING CONSIDERATIONS
The environmental and designing considerations for calculation the theoretical axial bearing capacity of the hollow tubular pile
based on the assigned boreholes & the pile cross-section characteristics [1].

A. Details of the Soil Layers
The details for the soil layers pile is shown below as per table I.

TABLE |
Details of the tubular steel pile
Soil layer Top of Bottom of U_nit Average 'I_'he_zoretical Elasticity modulus
layer layer weight SPT friction angle
Medium dense -10.5CD | -145CD | 18.5 kN/m® 25 37° 40,000 kN/m?
calcareous sand
Very dense sand -145CD | -165CD | 18.5kN/m’ 65 42° 90,000 kN/m?
Veryweaktoweak | 4eccon | 300CD | 185 kn/m® | MOre than 45° 110,000 kN/m?
calcareous sandstone 100
B. Details of the Tubular Steel Pile
The details for the tubular steel pile is shown below as per table 11.
TABLE Il
Details of the tubular steel pile

Diameter of the pile 610 mm

Thickness of the pile 20 mm

Raking of the pile 0° (Vertical)

Pile head level +35CD

Pile toe level - 20.50 CD

Pile Length 23.5m

Moment of inertia of the 1614896433 mm*

pile

Elastic Modulus 210000 N/mm?

Fyieig Strength 355 N/mm?
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IILTHEORETICAL AXIAL PILE CAPACITY
Pile vertical capacities are calculated as the ultimate vertical capacity Qq of a pile in cohesion-less soil is the sum of the shaft
resistance Q; and the toe resistance Q,. The API method equations are presented below [2]-[3].

Qr=Q5+Qp 1)
Qr-f*A+q* A 2
1) Where

a) Qg itisthe ultimate vertical capacity.
b) Qf itisthe shaft resistance capacity.
c) Q, itisthe toe resistance capacity.

d) f itisthe unit skin friction capacity.
e) A, itisthe side surface area of pile.

f) g itistheunit end bearing capacity.
g) A, itisthe grossend area of pile.

For piles in cohesion-less soils, unit skin friction can be calculated by the equation (3) below [2]-[3].
f-K*tan(6) * Py (3)

2) Where

a) K itisthe coefficient of lateral earth pressure.

b) & itisthe friction angle between pile and soil.

c) Py itisthe unit effective overburden pressure at the centre of depth increment d.
d) A, itisthe grossend area of pile

For piles in cohesion-less soils, unit end bearing can be calculated by the equation [2]-[3].
f-Ng* Po (4)

3) Where

a) Ng itisthe bearing capacity factor.

b) P, itisthe effective overburden pressure at pile tip.
c) A, itisthe grossend area of pile

The resistance from the top 4 m of medium dense soil is neglected to account for the presence of carbonate content in this layer. The
allowable axial Load is calculated by dividing the ultimate capacity by a factor of safety of 2 [2]. Pile capacity analysis was
calculated for both plugged and no plug conditions.

In no-plug condition, soil penetrates the pile profile and provide friction resistance on both sides of the casing i.e. inside and outside.
Plugged condition occurs when soil squeezes inside and plugs the pile profile preventing further ingress of soil into pile thus
providing outside friction and end bearing resistances.

Design pile capacity considered has the lowest from both the analysis, which in the present case corresponds to no-plug condition.
In general, very dense cemented sands are expected to be in no-plug conditions. The ultimate vertical capacity was calculated 1014
KN and the allowable vertical capacity was calculated to be 507 KN, as shown in Fig. 1.
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Soil Profile
From | To | SoilType | SPTN aeN"I:'})’ Cu Phi
0 2 Medium 24 18.5 = 35
2 4 |denseSand | 37 18.5 - 35
4 g | Velydenssi| g 20 s 42
Sand
6 3o | Galoareous |, 449 22 = 45
Sandstone
Ultimate End
End Bearing Capacity Calculations bearirzg,\f)apcity
Angle of Pile | Effective E';‘ffe“r"e U"g:: 3 pite | Pug (50%
Methods in$e(nal Ng density BWL BURdaH Bearing ARRliEE 'o' total
friction depth (m) | (kN/cu.m.) (kPa) Pressure pile area)
(kPa)
API 45 50 10 12.2 103.9 5195 193 759
Densi Angle of | Effective | Soil Pile Fs Ultimat UI(iFI:ate
From To (kil’;::;y) in!er_nal over burden [ Friction K Tané |f, [kN/m?] [:N] (I)'L‘tae f [kN]
friction [kPa} (Pd) Angle(s) ltinar
0 0.5 18.5 35 22 25 0.80 0.47 0.8 0.8 0.7
0.5 1 18.5 35 6.6 25 0.80 0.47 25 24 22
1 1.5 18.5 35 11.0 25 0.80 0.47 4.1 3.9 37
1.5 2 18.5 35 15.4 25 0.80 0.47 5.7 5.5 5.1
2 25 18.5 35 19.8 25 0.80 0.47 74 71 6.6
25 3 18.5 35 242 25 0.80 0.47 9.0 8.7 8.1
3 3.5 18.5 35 28.6 25 0.80 0.47 10.7 10.2 9.6
3.5 4 18.5 35 33.0 25 0.80 0.47 12.3 11.8 11.0
4 4.5 20 42 37.8 30 0.80 0.58 17.4 16.7 15.6
45 5 20 42 429 30 0.80 0.58 19.8 19.0 177
5 55 20 42 48.0 30 0.80 0.58 224 212 19.8
5.5 6 20 42 53.1 30 0.80 0.58 245 23.5 219
6 6.5 22 45 58.7 35 0.80 0.70 32.9 315 29.4
6.5 7 22 45 64.8 35 0.80 0.70 36.3 34.8 325
T4 7.5 22 45 70.9 35 0.80 0.70 39.7 38.0 36.0
75 8 22 45 77.0 35 0.80 0.70 431 413 38.6
8 8.5 22 45 83.1 35 0.80 0.70 46.5 446 4.7
8.5 9 22 45 89.2 35 0.80 0.70 50.1 48.0 449
9 9.5 22 45 95.3 35 0.80 0.70 53.4 51.1 47.8
9.5 10 22 45 101.4 35 0.80 0.70 57.2 54.8 51.2
Total Skin friction Excluding top 4 m 424 397

Vertical Capacity
Criteria 1: External skin friction + End bearing on the pile wall annulus + Total internal skin friction

Criteria 2: External skin friction + End bearing on the pile wall annulus + End bearing of the plug

Ultimate vertical capacity = minimum of criteria 1 and criteria 2

Criteria 1 = 1014 kN
Criteria 2 = 1376 kN
Hence ultimate vertical capacity = 1014 kN
Allowable vertical capacity = 507 kN

Fig. 1 The ultimate vertical capacity calculations and the allowable vertical capacity calculations

IV.ACTUAL AXIAL PILE CAPACITY
The implementation of the driving pile activity was done in two stages. First stage was driving the pile to embedded depth equal to
9.63 m using vibro-hammer, as shown in Fig. 2 and Fig. 3.

w k= il
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Fig. 2 The vibro-hammer ICE 815C
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Fig. 3 Driving the pile to embedded depth equal to 9.0 m using vibro-hammer

The second stage was driving the pile to extra embedded depth equal to 0.37 m using hydro-hammer. The second stage of the pile
driving activity has been implemented seven days after the first stage. We have monitored the dynamic load testing beginning of re-
strike by applying a hammer blows to the top of the pile. IHC S-90 hydraulic hammer with 4.5-tons weight was then used for
application of hammer blow. The average set per blow measured after the final test blow for the pile was 11.94mm (370mm/31
blows). In the field, the pile driving analyser records the data measured during dynamic testing and interprets it according to the
Case Method equations based on the impact wave-down and the response wave-up calculated from the pile driving analyser force
and velocity measurements near the pile top. The team evaluated the dynamic test results for hammer performance, pile head
compression stresses, structural integrity, and static pile capacity. CAPWAP analyse has provided more accurate and detailed
estimates of capacity and strength and help to assess the effects of changes in pile cross-section or material, as shown in Fig. 4, Fig.
5, Fig. 6, Fig. 7, Fig. 8 and Fig. 9.

$8-

Fig. 5 PDA installation
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Fig. 6 Pile driving using hydro-hammer IHC S-90

SUMMARY OF PDA RESULTS SUMMARY OF CAPWAP RESULTS
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Beginning of Re-strike (BOR) 507
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Fig. 7 PDA and CAPWAP results
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Fig. 8 PDA and CAPWAP charts (1/2)
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Fig. 9 PDA and CAPWAP charts (2/2)

V. CONCLUSIONS
The theoretical ultimate capacity of the axial tubular pile was calculated is 1014.0 KN [2]-[3], while the actual capacity of the axial
tubular pile was measured as 1669.6 KN. The actual results is of the pile capacity is 164.65 % of the theoretical capacity for the
same design characteristics & criteria.
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