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Abstract: This paper shows how Average value based approach and Newton Gregory Formulae can be used in a successful way to 
model the locomotion of human knee joint. A Novel modeling technique based on Average Value algorithm has been developed for 
a healthy human knee joint locomotion. The developed mathematical model will become a guide line for the design of drive 
mechanism having similar motion. The requirements of this approach are a set of reading from the real time system. In this paper 
we considered subjects performing gait on normal floor. The knee joint locomotion is modeled from the data acquired by means of 
calculating the base value and the variational components. The entire procedure is achieved through the video picture of the 
locomotion captured by single or multiple cameras with proper resolution. The results obtained from the proposed model and 
actual results of locomotion of human knee joint were giving close results. 

I. INTRODUCTION 
Interpolation is the technique of estimating the value of a function for any intermediate value of the independent variable, while the 
process of computing the value of the function outside the given range is called extrapolation. 
Forward Differences:  [1] 
The differences  
y1 – y0, y2 – y1, y3 – y2, ……, yn – yn–1  
when denoted by  
dy0, dy1, dy2, ……, dyn–1  
are respectively, called the first forward differences. Thus the first forward differences are : 
 
A. Newton’s Gregory Forward Interpolation Formula : [2] 
This formula is particularly useful for interpolating the values of f(x) near the beginning of the set of values given. h is called the 
interval of difference and u = ( x – a ) / h, Here a is first term. 
1) Example 
a) Input : Value of Sin 52 
b) Output : Value at Sin 52 is 0.788003 
Below is the implementation of newton forward interpolation method. [3] 

C++ 
// CPP Program to interpolate using   
// newton forward interpolation  
#include <bits/stdc++.h>  
using namespace std;  
   
// calculating u mentioned in the formula  
float u_cal(float u, int n)  
{  
    float temp = u;  
    for (int i = 1; i < n; i++)  
        temp = temp * (u - i);  
    return temp;  
}  
// calculating factorial of given number n  
int fact(int n)  
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{  
    int f = 1;  
    for (int i = 2; i <= n; i++)  
        f *= i;  
    return f;  
}  
int main()  
{  
    // Number of values given  
    int n = 4;  
    float x[] = { 45, 50, 55, 60 };  
    // y[][] is used for difference table  
    // with y[][0] used for input  
    float y[n][n];  
    y[0][0] = 0.7071;  
    y[1][0] = 0.7660;  
    y[2][0] = 0.8192;  
    y[3][0] = 0.8660;  
    // Calculating the forward difference  
    // table  
    for (int i = 1; i < n; i++) {  
        for (int j = 0; j < n - i; j++)  
            y[j][i] = y[j + 1][i - 1] - y[j][i - 1];  
    }  
    // Displaying the forward difference table  
    for (int i = 0; i < n; i++) {  
        cout << setw(4) << x[i]   
             << "\t";  
        for (int j = 0; j < n - i; j++)  
            cout << setw(4) << y[i][j]   
                 << "\t";  
        cout << endl;  
    }  
    // Value to interpolate at  
    float value = 52;  
   
    // initializing u and sum  
    float sum = y[0][0];  
    float u = (value - x[0]) / (x[1] - x[0]);  
    for (int i = 1; i < n; i++) {  
        sum = sum + (u_cal(u, i) * y[0][i]) /  
                                 fact(i);  
    }  
    cout << "\n Value at " << value << " is "  
         << sum << endl;  
    return 0;  
 
}  
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2) Output 
  45    0.7071    0.0589    -0.00569999    -0.000699997     
  50    0.766    0.0532    -0.00639999     
  55    0.8192    0.0468     
  60    0.866     
  Value at 52 is 0.788003 
3) Backward Differences: The differences y1 – y0, y2 – y1, ……, yn – yn–1 when denoted by dy1, dy2, ……, dyn, respectively, are 

called first backward difference. Thus the first backward differences are[3] 
 

B. Newton’s Gregory Backward Interpolation Formula 
This formula is useful when the value of f(x) is required near the end of the table. h is called the interval of difference and u = ( x – an 
)/h, Here an is last term. [4] 
1) Example  
a) Input: Population in 1925 
b) Output: Value in 1925 is 96.8368  
Below is the implementation of newton backward interpolation method. [4] 

C++ 
// CPP Program to interpolate using  
// newton backward interpolation  
#include <bits/stdc++.h>  
using namespace std;  
// Calculation of u mentioned in formula  
float u_cal(float u, int n)  
{  
    float temp = u;  
    for (int i = 1; i < n; i++)  
        temp = temp * (u + i);  
    return temp;  
}  
// Calculating factorial of given n  
int fact(int n)  
{  
    int f = 1;  
    for (int i = 2; i <= n; i++)  
        f *= i;  
    return f;  
}  
int main()  
{  
    // number of values given  
    int n = 5;  
    float x[] = { 1891, 1901, 1911,   
                  1921, 1931 };  
    // y[][] is used for difference   
    // table and y[][0] used for input  
    float y[n][n];  
    y[0][0] = 46;  
    y[1][0] = 66;  
    y[2][0] = 81;  



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 

                                                                                                                Volume 7 Issue XII, Dec 2019- Available at www.ijraset.com 
     

 

©IJRASET: All Rights are Reserved 
 

95 

    y[3][0] = 93;  
    y[4][0] = 101;  
    // Calculating the backward difference table  
    for (int i = 1; i < n; i++) {  
        for (int j = n - 1; j >= i; j--)  
            y[j][i] = y[j][i - 1] - y[j - 1][i - 1];  
    }  
    // Displaying the backward difference table  
    for (int i = 0; i < n; i++) {  
        for (int j = 0; j <= i; j++)  
            cout << setw(4) << y[i][j]   
                 << "\t";  
        cout << endl;  
    }  
    // Value to interpolate at  
    float value = 1925;  
    // Initializing u and sum  
    float sum = y[n - 1][0];  
    float u = (value - x[n - 1]) / (x[1] - x[0]);  
    for (int i = 1; i < n; i++) {  
        sum = sum + (u_cal(u, i) * y[n - 1][i]) /  
                                     fact(i);  
    }  
    cout << "\n Value at " << value << " is "  
         << sum << endl;  
    return 0;  
}  
2) Output 
  46     
  66      20     
  81      15      -5     
  93      12      -3       2     
 101       8      -4      -1      -3     
 Value at 1925 is 96.8368 

II. CONCLUSION 
According to the analysis the performance of Newton interpolation formula on different types of functions is presented. Experimental 
results show that for reconstructing a signal it works better for the area where signal values are relatively constant or increasing. In 
conclusion, it can be said that this formula is designed for a function whose value will increase or remain constant with the 
independent variable. 
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