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I. INTRODUCTION 
Mathematically, the phenomenon of the electromagnetic waves propagation is generally modeled by the system of equations known 
as the Maxwell equations. There are two modes of the Maxwell equations to be treated, a first mode that is known by the time 
domain Maxwell equations in which the evolution of electromagnetic fields is studied as a function of time and the second mode 
that is known by the frequency domain Maxwell equations where one studies the behavior of electromagnetic fields when the source 
term follows a harmonic dependence in time. 
Numerical modeling has become the most important and widely used tool in various fields such as scientific research. The finite-
difference methods (FDM), the finite element methods (FEM) and the finite volume methods (FVM) are the three classes of 
methods known for the numerical resolution of the problems of electromagnetic waves propagation. In 1966, Yee cited the first 
efficient method in [42] which is the finite-difference methods in the time domain (FDMTD). When diffraction problems are posed 
in unbounded domain, the use of these methods induces a problem. In order to solve it, two techniques are used. The first consists in 
reducing to a bounded domain by truncating the computational domain, then it is necessary to impose an artificial condition on the 
boundary on the truncation boundary. The second technique consists in writing an equivalent problem posed on the boundary of the 
obstacle, it is therefore what is called the theory of integral equations. The numerical resolution can then be done by discretizing the 
problem by collocation (method of moments, method of singularity) or by a finite element discretization of the boundary. In 1980, 
Nedelec introduces the edge finite element method developed in [31] which is also available in [29, 30]. With the conservation of 
energy, this method also possesses several advantages; it allows to treat unstructured meshes (complex geometries) as it can be used 
with high orders (see [41, 24, 29]). 
In recent years, research has revealed a new technique known as Discontinuous Galerkin Methods (GDM); this strategy is based on 
combining the advantages of FEM and FVM methods since it approaches the field in each cell by a local basis of functions by 
treating the discontinuity between neighboring cells by approximation FVM on the flows. Initially, these methods have been 
proposed to treat the scalar equation of neutron transport (see [35]). In the field of wave propagation, precisely for the resolution of 
the Maxwell equations in the time domain, many schemes are based on two forms of formulations: a concentrated flux formulation 
(see [16, 34]) and an upwind flux formulation (see [22, 12]). 
Discontinuous Galerkin methods have shown their effectiveness in studying the problem with discrete eigenvalues (see [23]). In 
frequency domain, for the resolution of Maxwell equations, the majority consider the second order formulation (see [25, 32, 33]), as 
others study the formulation of the first order as in [6, 20]. 
This strategy of the CDGIR method allows us to write a problem in an unbounded domain into an equivalent problem in a domain 
bounded by a fictitious boundary where a transparent condition is imposed. This transparent condition is based on the use of the 
integral form of the electric and magnetic fields using the Stratton-chu formulas (see [7]). This process has been studied, in the 
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framework of a coupling between a volume finite element method and a finite element method of boundary, in [5] for the resolution 
of the Helmholtz equation and in [28] for the resolution of the frequency domain Maxwell equations. 
In contrast, taking into account the costs of computation and memory occupancy thanks to the matrix resulting from the 
implementation of the linear system which is full, the methods remain poorly adapted. In 2002, cost problems were largely solved 
by using multipole methods [39, 8]. 
A work was done by Darrigrand and Monk in [9] which studies the combination of the ultra-weak variational formulation (UWVF) 
and the integral representation using a fast multipole method for solving the Maxwell’s equations. 
Electromagnetic phenomena are generally described by the electric and magnetic fields E and H which are related to each other by 
the following Maxwell equations:  

−휀휕 ℰ + 훻 × ℋ = 푗,
    휇휕 ℋ + 훻 × ℰ = 0, (1) 

where ε and μ are the complex-valued relative dielectric permittivity and the relative magnetic permeability, respectively. In the 
presence of an obstacle D, we are interested in particular solutions of the Maxwell’s equations assuming a time-harmonic regime:  

ℰ(푥, 푡) = 푅푒(퐸(푥)푒푥푝(−푖휔푡)),
ℋ(푥, 푡) = 푅푒(퐻(푥)푒푥푝(−푖휔푡)), 

 
where E, H are two complex values and ω denotes the angular frequency. The time-harmonic Maxwell system is then written as 
follows:  

 훻 × 퐸 − 푖휔휇퐻 =     0         푖푛         ℝ \퐷,
훻 × 퐻 + 푖휔휀퐸 =     퐽         푖푛         ℝ \퐷.

 (2) 

The proposed idea to solve this problem is to limit the domain, which is initially unbounded, by a fictitious boundary Γ  on which 
we impose an absorbing boundary condition defined in terms of an integral representation (IR) of the solution. 
This concept was introduced by Lenoir and Jami in hydrodynamics in 1978 [26], then in 1996 by Lenoir and Hazard for the 
Maxwell’s equations by using nodal finite elements [19]. Liu and Jin presented very interesting results in 3D by proposing an 
iterative algorithm which was then interpreted as a Schwarz technique with total recovery by Ben Belgacem et al. in [4]. M. El 
Bouajaji and S. Lanteri have used in [11] discontinuous Galerkin methods to solve the two-dimensional time-harmonic Maxwell’s 
equations.  
The method of coupling between the finite element and the integral representation, has not had much popularity in the scientific and 
industrial committee, despite its many advantages. 
As of the years 2000, in [27] a renewed interest in this method emerged, following the development of parallel computers and 
especially the iterative techniques associated with domain decomposition methods. 
Following the article of Ben Belgacem - Gmati in [4], some teams are interested in the method and especially its advantages for the 
problem solving of diffraction of electromagnetic waves around obstacles covered by a dielectric material [1, 18]. 
Indeed in this case, a boundary finite element technique is not yet applicable and it is with coupling between finite element method 
and integral equation method that it is used. However, the iterative algorithms for solving this type of problem prove to converge 
more slowly, whereas the finite element methodological coupled to an integral representation method shows good convergence 
results. This was explained in the works of [3, 2]. 
Choosing a appropriate preconditioner for all the used methods, we can rewrite the problem in the form of a linear system where it 
appears an operator I-K, where I is the identity and K is a bounded operator. For the coupling method, K is a compact operator 
which guarantees the required properties for a fast convergence of the iterative algorithms for the discrete problem. Then, the 
sequence 푥 = 퐾푥 + 푓 will converge to a solution of our problem as soon as sp(K)⊂D(0,1), and the convergence is linear. In 
case where a Krylov space type algorithm (GMRES or BICGSTAB, for example) is used, the convergence is super- linear. It is for 
these reasons that we aim to use this method in the context of a discretization by Discontinuous Galerkin method.. 

II. MAXWELL’S DISCRETE PROBLEM 
Discontinuous Galerkin methods are a combination of finite element method and finite volume method. These methods are 
commonly used for solving the Maxwell’s equations in 1D, 2D and 3D. 
In 2D, Discontinuous Galerkin methods are developed on triangular meshes while they are developed on tetrahedral meshes in the 
three-dimensional case [15, 14, 16, 21, 10]. 
In this section, we give the detailed development for the 3D-Maxwell’s equations. 
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A. 3D Maxwell’s Equations with transparent boundary condition 
In this paper we focus on the study of the solution of the problem posed either with an absorbent boundary condition or an exact 
transparent condition: 
We denote by  퐸  and 퐻  the electric field and the magnetic field of the incident wave, respectively. 

 
Fig. 1  Diffraction of an electromagnetic wave in the presence of an obstacle D where its boundary is noted Γ  

The hyperbolicity of Maxwell’s system is immanent, the physical interpretation of this characterization is that the waves and the 
associated energy propagate in finite time according to particular directions. This property has been little exploited for the resolution 
of Maxwell’s system whereas it has been widely used for the Euler system, for example. The essential application of this property 
for numerical computation is the construction of decentred schemes which naturally take into account the direction of propagation 
of the waves. 
In this work, we study to investigate the propagation of a wave emitted in the presence of an obstacle D. 
This work is devoted to particular solutions, harmonic in time, this phenomenon is modeled by the the following equations:  

 ∇ × 퐸 + 푖휔휇퐻 =     퐽         푖푛         ℝ ⟍퐷,
∇ × 퐻 − 푖휔휀퐸 =     0         푖푛         ℝ ⟍퐷.

 (3) 

 
For simplicity we assume that J=0. 
The idea of solving our problem in the present paper, is to limit the computational domain by a fictitious boundary and using an 
absorbant condition on this boundary and to use an exact condition on the fictitious boundary, hence the idea of the use of the 
expression of electric and magnetic fields defined by Stratton-Shu formulas, in the Silver-Müller conditions. 
At this phase, we introduce the equations of our problem (4) 

⎩
⎪
⎨

⎪
⎧
퐹푖푛푑         퐸,퐻 ∈ 퐻(∇ ×,Ω)         푠푢푐ℎ  푎푠: 
푖휔휀퐸 − ∇ × 퐻 = 0         푖푛         Ω
푖휔휇퐻 + ∇ × 퐸 = 0         푖푛         Ω
푛 × 퐸 = −푛 × 퐸          표푛         Γ
푛 × 퐸 − 푛 × (푛 × 퐻) = 푛 × ℜ(퐸) − 푛 × (푛 × ℜ(퐻))       표푛       Γ

  (4) 

 we set:  
 

퐸 =
퐸
퐸
퐸

     ,     퐸 =
퐸
퐸
퐸

     ,     퐻 =
퐻
퐻
퐻

     푒푡     푛 =
푛
푛
푛

 

We are going to give a global equation in the vector field W such that:  푊 = 퐸
퐻  

Finally the initial problem (4) will be written in this matricial form: 

 
푖휔푄푊 + 훻.퐹(푊) = 0     표푛     훺
퐴푊 = −퐴푊      푖푛     훤
퐵푊 = 퐵ℜ(푊)     푖푛     훤 .

(5) 

which is equivalent to: 
푖휔푄푊 + 퐺 휕 푊 + 퐺 휕 푊 + 퐺 휕 푊 = 0     표푛     Ω
(푀 −퐺 )(푊 +푊 ) = 0     푖푛     Γ
(푀 − 퐺 )(푊−ℜ(푊)) = 0     푖푛     Γ .

 (6) 

In fact, denoting by (푒 , 푒 , 푒 ) the canonical basis of ℝ , the matrices 퐺  for 푘 ∈ {푥,푦, 푧} are defined by: 
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퐺 =
0 × 푁
푁 0 ×

 where for 푙 ∈ {1,2,3} a vector 푣 =
푣
푣
푣

, 푁 =
0 푣 −푣
−푣 0 푣
푣 −푣 0

 

Furthermore, 퐺 = 퐺 푛 + 퐺 푛 + 퐺 푛 .  
퐺  and 퐺  denote the positive and negative parts of 퐺  1. We also define |퐺 | = 퐺 − 퐺 . The matrices 푀  et 푀 , are then 
defined by: 

푀 =
0 × 푁
−푁 0 ×

  and 푀 = |퐺 | 

퐴 = 푀 −퐺  , 퐵 = 푀 − 퐺  

B. Discretization 
The domain Ω is partionned into 푁 tetrahedral elements. We denote by 휏  the set of elements 퐾 . We introduce the following space 
푉 = {푊 ∈ [퐿 (훺)] ;푊| = 푊 ∈ 푃 (퐾)}; for all 퐾 ∈ 휏 } where 푃 (퐾) = {polynomials for 퐾 of degree ⩽ 푝}. 

We denote by 푊 = (퐸 ,퐻 ) the approximate solution of our problem ∈ 푉 × 푉  and we will define 훤 = ⋃  ∈ 퐾 ∩ 퐾 , 훤 =

⋃  ∈ 퐾 ∩ 훤 ,  훤 = ⋃  ∈ 퐾 ∩ 훤 . 
Multiplying the equation:  푖휔푄푊 +∑  ∈{ , , } 퐺 휕 푊 = 0  of the last system by 푉 ∈ 푉 × 푉  and then integrated over an element 
퐾 ∈ 휏  

 (푖휔푄푊) 푉푑푥 +  (  
∈{ , , }

퐺 휕 푊) 푉푑푥 = 0 

⇔  (푖휔푄푊 ) 푉푑푥 +  (  
∈{ , , }

퐺 휕 푊 ) 푉푑푥 = 0 

By using Green formula, we have: 
 

 (푖휔푄푊 ) 푉푑푥 −  푊 (  
∈{ , , }

퐺 휕 푉)푑푥 +  (퐹(푊) . 푛)푉휕휎 = 0, 

Our aim is to find 푊 ∈ 푉 × 푉  which verifies the following equation: 
∀    푉 ∈ 푉 × 푉 ,  ∫  (푖휔푄푊 ) 푉푑푥 − ∫  푊 (∑  ∈{ , , } 퐺 휕 푉)푑푥 + ∫  (퐹(푊) . 푛)푉휕휎 = 0,               (6) 

In the equation (6), we find that there is a term defined on the boundary of the element 퐾 , but the value is not defined on its faces. 
There is the idea of the approach by an approximation of the value of the solution on each edge depending on the right and left 
traces. 
By a development similar to that adopted by Ern and Guermond [12, 13], and adding the terms of the integral representation 
following formulation is obtained: 
∀    푉 ∈ 푉 × 푉 , 퐾  an element of 휏  obtained: 
Find 푊 ∈ 푉 × 푉  such as:  

. 

∫  (푖휔푄푊 ) 푉푑푥 − ∫  푊 (∑  ∈{ , , } 퐺 휕 푉)푑푥

+ ∫  ∈ (퐼 푆 푊 ) 푉 + (퐼 퐺 {푊 }) 푉 휕휎

+ ∫  ∈ ( (푀 , + 퐼 퐺 )푊 ) 푉휕휎

− ∫  ∈ ( (푀 , − 퐼 퐺 )ℜ(푊 )) 푉휕휎

+ ∫  ∈ ( (푀 , + 퐼 퐺 )푊 ) 푉휕휎

= ∫  ∈ ( (푀 , − 퐼 퐺 )푊 ) 푉휕휎

 (9) 

where: 
퐼  represents the incidence matrix between facing surfaces and elements whose entries are given by: 

                                                
1 If 푃훬푃  is the natural factorization of 퐺푛 then 퐺푛

± = 푃훬±푃−1 where 훬+ (resp. 훬−) includes only positive eigenvalues (resp. negative). 
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퐼 =
1         푖푓     퐹 ∈ 퐾     푎푛푑  표푟푖푒푛푡푎푡푖표푛푠  표푓 푛  푎푛푑 푛  푎푟푒  푚푎푡푐ℎ ,
−1         푖푓     퐹 ∈ 퐾     푎푛푑  표푟푖푒푛푡푎푡푖표푛푠  표푓 푛  푎푛푑 푛  푑표  푛표푡  푚푎푡푐ℎ ,
0         푖푓  푡ℎ푒  푓푎푐푒     퐹     푑표푒푠  푛표푡  푏푒푙표푛푔  푡표  푡ℎ푒  푒푙푒푚푒푛푡     퐾.

 

where: 푛  is the unitary normal associated to the oriented face 퐹 and 푛  is the unitary normal associated to the cell 퐾. 
We also define respectively the jump⟦. ⟧ and average {. } of a vector 푉 to 푉 × 푉  on the face 퐹 shared between two elements 퐾 and 
퐾 

 
 ⟦푉⟧ = 퐼 푉| + 퐼 푉|          푎푛푑         {푉} = 푉| + 푉|  

In this study, we consider two classical numerical fluxes, which lead to different definitions for matrices 푆  et 푀 , : 

1)  Centered flux:  In this case, 푆 = 0 and the faces of the boundary we use 

푀 , =

⎩
⎪
⎨

⎪
⎧
퐼

0 × 푁

−푁 0 ×

         푖푓       퐹  ∈ Γ .

|퐺 |         푖푓       퐹  ∈ Γ .

 

2)  Upwind flux 

In this case,  

푆 =
훼 푁 푁 0 ×

0 × 훼 푁 푁
; 푀 , =

⎩
⎪
⎨

⎪
⎧ 휂 푁 푁 퐼 푁
−퐼 푁 0 ×

         푖푓       퐹  ∈ Γ .

|퐺 |         푖푓       퐹  ∈ Γ ,

 

for a homogeneous medium,    휂 = 훼 = 훼 =  
 
Finally, we introduce 퐹 = 퐾 ∩ 퐾 , 퐹 = 퐾 ∩ Γ , 퐹 = 퐾 ∩ Γ  and 푉 : the set of indices of neighboring elements of 퐾 . So we 
can write our formulation in the following form: 
 
∀    푉 ∈ 푉 × 푉  and for 퐾  an element of 휏 : 
Find 푊 ∈ 푉 × 푉  such as:  
 

 

∫  (푖휔푄푊 ) 푉푑푥 − ∫  푊 (∑  ∈{ , , } 퐺 휕 푉)푑푥

+ ∑  ∈ ∫  (퐼 (푆 퐼 + 퐺 )푊 ) 푉

+ ∑  ∈ ∫  (퐼 (푆 퐼 + 퐺 )푊 ) 푉

+ 훿 ∫  ( (푀 , + 퐼 퐺 )푊 ) 푉휕휎

− 훿 ∫  ( (푀 , − 퐼 퐺 )ℜ(푊 )) 푉휕휎

+ 훿 ∫  ( (푀 , + 퐼 퐺 )푊 ) 푉휕휎

= 훿 ∫  ( (푀 , − 퐼 퐺 )푊 ) 푉휕휎

  

 where: 

훿 = 1         푖푓         Γ ∩ 퐾 = 퐹
0         푖푓         Γ ∩ 퐾 = ⌀   푎푛푑  훿 = 1         푖푓         Γ ∩ 퐾 = 퐹

0         푖푓         Γ ∩ 퐾 = ⌀  

 
In the next section, we intend to write the variational formulation obtained in a linear system form 
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III. LINEAR SYSTEM OF THE PROBLEM 
we can reduce our problem as a linear system:  

(퐴 − 퐶)푋 = 푏 
 
such as 퐴 is the square matrix of size:  

푁 = 6 ×  푁푢푚푏푒푟  표푓  푑푒푔푟푒푒푠  표푓  푓푟푒푒푑표푚 ×  푁푢푚푏푒푟  표푓  푐푒푙푙푠  

 
this matrix is a sparse matrix defined by block size (6푑 × 6푑 ) such as: for 푖 = 1, … ,푁 :     퐴(푖, 푖) = 퐷 −퐷 + 퐷 × 훿 +
퐷 × 훿 + 퐷 × 훿    and for 푖, 푗 = 1, ,푁 :    퐴(푗, 푖) = 퐸 × 훿  
with:  

훿 =
0         푖푓         퐾 ∩퐾 = ⌀
 
1         푒푙푠푒

 

 
also, 퐶 is a square matrix of the same size as 퐴, defined by block size 6푑 × 6푑  such as: for 푖, 푗 = 1, … ,푁 :     퐶(푖, 푗) = −퐶 ×
훿 × 훿  where:  

훿 =
0         푖푓         퐾 ∩ 훤 = ⌀
 
1         푒푙푠푒

 

 
푋 is the vector of size 푁, Where its components are the unknowns of our problem and 푏 is the vector of size 푁 such as: 
 푏(푖) = 퐵 × 훿 . 
 
where: 퐷 = 푖휔(훷 ⊗푄), 퐷 = ∑  훷 ⊗퐺 , 퐷 = 훹 ⊗ (푀 , + 퐼 퐺 ) , 
 
 퐷 = 훹 ⊗ (푀 , + 퐼 퐺 ) , 퐷 = 훹 ⊗ 퐼 (푆 퐼 + 퐺 ) , 퐸 = ∑  ∈ 훹 ⊗ 퐼 (푆 퐼 + 퐺 ) ,  
 

퐶 = 훹 ⊗ 퐼 퐾 훹 ⊗ 퐼 , 퐵 = 푍 푊 = 훹 ⊗ (푀 , − 퐼 퐺 ) 푊 . 

IV. NUMERICAL STUDY 
This section is devoted to the numerical resolution of Maxwell’s 3D equations in parallel mode detailed in [17]. 
Since the linear system resulting from the discretization is of very large size and it is implies complex coefficient blocks and 
generally, not hermitian, for its resolution, an idea proposed by [38], it is to adopt a decomposition approach Domain. Then the 
global problem is decomposed into sub-problems related to each other by specific interface conditions. 
We consider here an iterative method of Krylov type as a strategy of resolution. Various methods of this type specified in not 
symmetric matrices (see [37]). In this study, we chose a bi-conjugated stabilized gradient method (BiCGStab) in the numerical tests 
of this manuscript. The BiCGStab method is introduced in 1992 by van der Vorst [40] and that combines the advantages of BiCG 
(Bi-Conjugated Gradient) and GMRES methods (see [36]). Following the mathematical study, developed in the previous chapter, of 
the resolution of the Maxwell equations in unbounded domain by the CDGIR method, we present a sample of the numerical results. 
We will give some numerical results by making the comparison between the approximate solution and the exact solution. We 
introduce the error formula:  

 

Error =
||퐸 − 퐸 || ( ) + ||퐻 − 퐻 || ( )

||퐸 || ( ) + ||퐻 || ( )
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Let us consider the problem of the diffraction of a plane wave 
 

 
Figure  2: Meshing of the volume between a first sphere of 
radius 푅 = 1 and a second sphere of radius 푅 = 1.06. A 

mesh size ℎ = 0.07 

 
Figure  3: Meshing of the volume between a first sphere of 
radius 푅 = 1 and a second sphere of radius 푅 = 1.06. A 

mesh size ℎ = 0.07. 

 

 
Figure  4: Maxwell 3D equations: diffraction of a plane wave 

by a perfectly conducting sphere: Approximate solution, 
wave number 푘 = 5. 

 
Figure  5: Maxwell 3D equations: diffraction of a plane wave 

by a perfectly conducting sphere: Exact solution, wave 
number 푘 = 5. 

TABLE I 
VARIATION OF EXTERNAL RADIUS, K=5 

Mesh #M1 #M2 #M3 
Distance between 횪풎 and 횪풂 0.2 0.4 0.6 

풉풎풂풙 0.1 0.1 0.1 
Number of elements 204222 476454 830879 
Relative error (DG) 0.467 × 10  0.288 × 10  0.286 × 10  

Relative error (DG+IR) 0.843 × 10  0.883 × 10  0.909 × 10  
 

 
Fig. 6  Maxwell 3D equations: diffraction of a plane wave by a perfectly conducting sphere: Exact solution, wave number k=5 
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A. Performance of methods with centered flux & upwind flux 
We will study the performances of two methods, Discontinuous Galerkin method and Discontinuous Galerkin method coupled to an 
integral representation, with the centered and upwind flux according to degree of freedom. 
We will fix:   
1) The distance between Γ  and Γ  at 0.5m.  
2) A frequency f = 300MHz.  
The comparison results between the two methods DG+IR and DG are illustrated in table II in the form of the relative error between 
the exact solution and the approximate solution either using a centered flux (see also figure 7) or an upwind flux (see also figure 8).    

 
Fig. 7  Electric Field Error according to degree of freedom: Centered flux 

 
Fig. 8  Electric Field Error according to degree of freedom: Upwind flux 

TABLE II. PERFORMANCE OF DG AND DG+IR METHODS WITH CENTERED AND UPWIND FLUX. 
Mesh Method Boundary faces Number of elements Relative error Time (s) 

Centered flux 
#M1 DG 13856 68662 6.32151× 10  185 
— DG+IR — — 4.45810× 10  3127 

#M2 DG 19662 112410 4.93931× 10  352 
— DG+IR — — 1.56624× 10  8794 

#M3 DG 22618 135661 4.50915× 10  633 
— DG+IR — — 9.22504× 10  12023 

#M4 DG 30174 212040 3.59586× 10  541 
— DG+IR — — 7.42106 × 10  13167 

#M5 DG 42286 351272 2.79567× 10  1436 
— DG+IR — — 5.50798 × 10  19221 

#M6 DG 61296 642020 3.29504× 10  822 
— DG+IR — — 5.42193× 10  12803 

Upwind flux 
#M1 DG 13856 68662 6.29630× 10  145 
— DG+IR — — 2.26847× 10  2973 

#M2 DG 19662 112410 4.92687× 10  384 
— DG+IR — — 1.10472× 10  8842 

#M3 DG 22618 135661 4.49918× 10  469 
— DG+IR — — 8.94731× 10  10513 

#M4 DG 30174 212040 3.59075× 10  637 
— DG+IR — — 6.70311× 10  2984 

#M5 DG 42286 351272 2.79336× 10  302 
— DG+IR — — 5.20943× 10  8460 

#M6 DG 61296 642020 3.29197× 10  73 
— DG+IR — — 4.82516× 10  2014 

A good improvement of the convergence is observed by using the DG method coupled to an integral representation using either a 
centered flux or an upwind flux 
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B. Error Depending on the size of the Domain of Study 
We are interested in the case where the discretization step h and the waves number k=10 are fixed and by varying the distance 
delimited between the boundary of the obstacle Γ   and the artificial boundary Γ  by keeping a choice of wavelength equal to 20h. 
We will illustrate in a table III the evolution of the error for the two methods DG and DG+IR. 

 
Fig. 9  Error according the size of the domain R 

TABLE III 
VARIATION OF EXTERNAL RADIUS, K=5 

Mesh Method Distance between 횪풎 and 횪풂 풉풎풂풙 Number of elements Relative error Time (s) 
#M1 DG 0.03 0.03 359487 0.380453 × 10  1280 
— DG+IR — — — 0.514891 × 10  18271 

#M2 DG 0.06 0.03 748447 0.285759 × 10  2370 
— DG+IR — — — 0.501781 × 10  34483 

#M3 DG 0.12 0.03 897438 0.273918 × 10  2343 
— DG+IR — — — 0.500574 × 10  35847 

C. Error Depending on the Waves Number 푘 
By fixing the number of finite elements layers with two layers, we are interested in the evolution of the error by varying the waves 
number k and by keeping a choice of wavelength equal to 10h. 
We will illustrate in a table  IIV the evolution of the error for the two methods DG and DG+IR. 

TABLE IIIV 
ERROR ACCORDING THE WAVE NUMBER   푘 

Mesh Method Wave number Distance between 
횪풎 and 횪풂 

풉풎풂풙 Number of 
elements 

Relative error  
Time (s) 

 
#M1 DG 1 1.2 0.6 6901 0.272 × 10  919 
— DG+IR — — — — 0.920 × 10  13967 

#M2 DG 2 0.57 0.3 18352 0.443 × 10  761 
— DG+IR — — — — 0.904 × 10  13221 

#M3 DG 8 0.105 0.07 510289 0.353 × 10  3002 
— DG+IR — — — — 0.811 × 10  55002 

#M4 DG 12 0.08 0.05 1011662 0.251 × 10  5501 

— DG+IR — — — — 0.804 × 10  93364 

#M5 DG 16 0.054 0.03 800790 0.282 × 10  4009 

— DG+IR — — — — 0.801 × 10  82526 
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Figure 10: Error according the wave number 푘. 

D. Variation of R where 풌 = ퟓ 
The table (V) illustrates the results of comparison, of two methods DG and DG+IR, obtained by varying the outer radius and fixing 
the mesh size h. 

TABLE V 
VARIATION OF EXTERNAL RADIUS, ℎ = 0.1 AND 푘 = 5 

Mesh Method Distance between 
횪풎 and 횪풂 

풉풎풂풙 Number of elements Relative error Time (s) 

#M1 DG 0.2 0.1 204222 0.429 × 10  534 
— DG+IR — — — 0.231 × 10  12521 

#M2 DG 0.4 0.1 476454 0.288 × 10  1263 
— DG+IR — — — 0.250 × 10  17934 

#M3 DG 0.6 0.1 830879 0.286 × 10  761 
— DG+IR — — — 0.252 × 10  13627 

 
From the results obtained, it is clear that:   
1) The DG+IR method is more efficient.  
2) It is clear that the results obtained using the upwind flus are better. 

V. CONCLUSION 
In study, we have shown the high efficiency of the DG+IR method. So, since the results obtained are encouraging, the contributions 
proposed in this paper for the 3D Maxwell’s equations aim to make a study with a high interpolation order and to think about the 
use of other linear system solvers and even to choose a preconditioner in order to to further improve these results 
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