

3 V May 2015

www.ijraset.com Volume 3 Issue V, May 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
968

Defend Dos Attack with Geometric Hashing
Function and Software Puzzle

Kiruthika Rengaraj1, Matheshwaran Veerappan2
1,2Master of Computer Application, Anna University

Abstract- DOS attack can be exhaust the target server’s resources have become major threat to today’s internet. Even
though client problem represent a promising way to defend against certain classes of DOS attack, several questions stand in
the way of their use in practice. Existing software puzzle system issues their puzzle algorithm already. The attackers can
easily solving the puzzle using puzzle solving software. We proposed a new client puzzle software algorithm that can choose
puzzle algorithm randomly during the request form the client. The attacker cannot show progress since server chooses the
puzzle algorithm randomly. We implement an efficient password authentication scheme based on a geometric hashing
function in order to improve the confirmation. A single message prepared by the client and sent to the server, and a
confirmation performs by the server. It efficiently defends beside DOS, verifier-stolen attack, replay attack, password
guessing attack, min-in-the-middle attack.
Keywords— hashing function, DOS attack, puzzle algorithm

I. INTRODUCTION
Denial of Service (DoS) attacks is definitely a very serious trouble in the Internet, whose crash has been fine recognized in the
computer system literature. The most important plan of DoS is the disruption of services by effort to maximum access to a
machine or service as an alternative of undermines the service itself. This kind of attack plan at illustration a network unable of
provided that normal service by targets either the networks bandwidth or its connectivity. These attacks realize their aim by
sending at a casualty a stream of packets that swamps his network or processing capability deny contact to his usual clients. In
the not so remote past, there has been some large-scale attack targeting high profile Internet sites. Distributed Denial of Service
(DDoS), is a moderately simple, yet very leading technique to attack Internet resources. DDoS attacks add the many-to-one
dimension to the DoS difficulty creation the obstacle and alleviation of such attacks extra hard and the impact proportionally
severe. DDoS exploits the essential fault of the Internet system architecture, its open source access model, which satirically, also
happens to be its most benefit. DDoS attacks are including of packet streams from dissimilar sources. These attacks engage the
power of a vast number of coordinated Internet hosts to consume some critical resource at the target and deny the service to
legitimate clients. The traffic is usually so aggregated that it is difficult to distinguish legitimate packets from attack packets.
More importantly, the attack volume can be larger than the system can handle. Unless special care is taken, a DDoS victim can
suffer from damages ranging from system shutdown and file corruption, to total or partial loss of services. Background and
Related Work In currency-based DoS defense mechanisms a server under attack demands some type of payment from all clients
in order to raise the bar for provoking work by the server. In this section we explain some of the existing work on two classes of
currency-based mechanisms: puzzle-based and bandwidth-based. We also explain resource fairness as a goal that currency
mechanisms aim to achieve.

II. LITERATURE SURVEY
Ravinder Shankesi, Omid Fatemieh, and Carl A. Gunter, University of Illinois Urbana-Champaign [1]. Denial of Service (DoS)
attacks on the Internet aim to prevent legitimate clients from accessing a service and are considered a serious threat to the
availability and reliability of the Internet services. Numerous DoS defense mechanisms have been proposed in the literature.
Among them, we particularly focus on currency-based mechanisms. The broad design objective of the currency-based defense
mechanisms is to achieve resource fairness. Disparity is inevitable, but it has been argued that it is sufficiently modest for
proposed resources that currency-based schemes can be effective if they adapt to attackers dynamically. In this paper we argue
that such claims need to be analyzed in light of a threat that adversaries may have a way to achieve resource inflation, where
they use resources or techniques that valid clients may not have implemented. We consider a range of resource inflation
strategies and attempt to access their likely effectiveness. The paper makes three primary contributions. First, we introduce and
analyze the concept of resource inflation as a ‘thinking out of the box’ approach to defeating DoS countermeasures. Such a
puzzle scheme should also ensure that clients solving different puzzles of the same difficulty should require predictable and
similar computational resources. Creating such a puzzle scheme, which is cheap for the server to generate and verify, is an open

www.ijraset.com Volume 3 Issue V, May 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
969

problem.
Jeff green_, joshua juen, omid fatemieh, ravinder shankesi, dong jin, carl a. Gunter university of illinois at urbana-
champaign[2]. A contribution of this paper is the evaluation of Hash- Reversal PoW schemes in the presence of resource-
inflated attackers. Thus, we propose the use of protocols which adapt based upon client behavior. These are shown to be
effective. Given these results, hash reversal PoW schemes proposed for DoS protection mechanisms should keep track of client
behavior given the emerging threat of GPGPU based attacks. Modern GPUs are very efficient at processing large amounts of
data in parallel. This is often referred to as Single Instruction Multiple Data (SIMD) programming. Recently, there has been
significant interest in using GPUs for non graphical computation. This paradigm is known as General Purpose GPU (GPGPU)
computing or Stream Computing. GPU-based architectures consist of a large number of SIMD engines. Tracking the behavior
of each client provides a means of identifying those clients responsible for disproportionate load. Resource-scaling attackers are
capable of solving stunning quantities of puzzles, and generating massive load. Tracking should correctly identify, and penalize,
these clients. In conclusion, Hash-Reversal PoW schemes can effectively restrict a resource scaling adversary’s capabilities by
adjusting puzzle difficulty based on past client behavior.
Ronald L_ Rivest__ Adi Shamir___ and David A_ Wagner [3]. Our motivation is the notion of timed release crypto where the
goal is to encrypt a message so that it cannot be decrypted by anyone_ not even the sender_ until a predetermined amount of
time has passed. Use time_lock puzzles_computational problems that cannot be solved without running a computer
continuously for at least a certain amount of time_ Use trusted agents who promise not to reveal certain information until a
specified date. Using trusted agents has the obvious problem of ensuring that the agents are trustworthy secret sharing
approaches can be used to alleviate this concern. Using time_lock puzzles has the problem that the CPU time required to solve a
problem can depend on the amount and nature of the hardware used to solve the problem as well as the parallelizability of the
computational problem being solved. We first explore an approach based on computational complexity. We study the problem
of creating computational puzzles called time_lock puzzles that require a precise amount of time to solve. We propose an
approach to building puzzles that appears to be intrinsically sequential in the desired manner Of course our approach yields
puzzles with a solution time that is only approximately controllable since different computers work at different speeds. We first
explore an approach based on computational complexity: we study the problem of creating computational puzzles called time
lock puzzles that require a precise amount of time to solve. This approach has the obvious problem of trying to make CPU time
and real time agree as closely as possible but is nonetheless interesting. Our goal is thus to design time_lock puzzles that_ to the
greatest extent possible_ are intrinsically sequential in nature and cannot be solved substantially faster with large investments in
hardware.
David Keppel, Susan J. Eggers and Robert R. Henry [4]. We define runtime code generation (RTCG) as dynamically adding
code to the instruction stream of an executing program. An RTCG implementation dynamically compiles the expression into a
special-case function and then calls the function once per datum. In some systems the view of RTCG is strongly in sequenced
by the definition of code. Runtime code generation has been in use since the earliest programmable-store computers. In those
days, memory was tight and clever ad-hoc self-modifying code sequences were often smaller and thus faster. Runtime code
generation was used in early systems, but lost popularity as practices changed and as other concerns became more important. In
older systems, memory space was always tight. RTCG was used in a variety of ways to build programs that it in small memories
Portability became an issue with the proliferation of architectures and implementations, and the cost of writing and maintaining
software for each platform. Many portability problems were solved by switching to high-level languages, but most high-level
languages lack constructs for specifying RTCG. is profitable. In this paper we have analyzed RTCG as an optimization
technique. A runtime compiler can generate better code because it has more specific information about the particular execution.

III. EXISTING SYSTEM
An efficient puzzle based on repeated-squaring and we demonstrated its usefulness in several security-critical applications.
While we acknowledge that our puzzle, based on repeated-squaring, might not be ideal to compare the problem-solving
performance of processors, we argue in this section that our proposal presents one of the very few alternatives to securely and
efficiently assess the computing performance of devices. Few other directions seem interesting for Future work. First,
performing wide experiments on other types of puzzle-based and bandwidth-based schemes would be of significant value. Such
an analysis, for example, would result in exact numbers for inflation factors of attacks on memory-based puzzle schemes.
Second, by collecting accurate data on the distribution of computing and bandwidth resources of a great body of hosts, one can
build a mathematical model for danger analysis on various currency-based mechanisms. This division can be utilizing beside
with the inflation factor for building a mathematical model for the threat study. This capacity occupy, for example, increasing a
puzzle whose solution requires different computational operations based on the content of the puzzle itself. Such a puzzle
scheme should also ensure that clients solving different puzzles of the same difficulty should require predictable and similar

www.ijraset.com Volume 3 Issue V, May 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

970

computational resources. Creating such a puzzle scheme, which is cheap for the server to generate and verify, is an open
problem.

IV. PROPOSED SYSTEM
Our puzzle is based on repeated squaring and uses the puzzle proposed in as its basic building block, but “outsources “most of
verification of the puzzle’s solution to the prover; this is achieved without compromising the application purpose by embedding
a secret – only known to the verifier – within the trapdoor exhibited by the Euler function in modular square. We offer a
security evidence for this structure. To confirm the client’s key, the verifier only needs to execute a marginal number of
modular multiplications. A well-known countermeasure against DoS attacks are client puzzles. The maltreated server difficulty
from the clients to commit computing resources before it processes their requirements. To obtain service, a client must explain a
cryptographic puzzle and submit the correct answer. They are either parallelizable, coarse-grained or can be utilize only
interactively. In case of interactive client puzzles where the server poses the confront an attacker might mount a counterattack
on the clients by injecting fake packets containing bogus puzzle parameters.

A. Advantages
A puzzle client further takes advantage of puzzle solution packets to solicit updated puzzle parameters.

Figure 1: System Architecture

V. CONCLUSION
A new verification-efficient client puzzle based on frequent squaring. Our puzzle expands the time-lock puzzle permit a
considerably more efficient verification of the puzzle solution that is reported by provers. More specifically, our scheme
transfers the puzzle verification burden to the prover that executes the puzzle; we achieve this by embedding a secret – only
known to the verifier – surrounded by the Euler trapdoor function that is used in repeated squaring puzzles. Given this, the
development gain in the verification overhead of our puzzle when compared to the original repeated-squaring puzzle is almost
50 times for a 1024-bit modulus. We additional demonstrate how our puzzle can be integrated in a number of protocols,
including those used for protection against DoS attacks and for the remote verification of the computing performance of devices

REFERENCES

[1] R. Shankesi, O. Fatemieh, and C. A. Gunter, “Resource inflation threats to denial of service countermeasures,” Dept. Comput. Sci., UIUC, Champaign, IL,
USA, Tech. Rep., Oct. 2010. [Online]. Available: http://hdl.handle.net/2142/17372

[2] J. Green, J. Juen, O. Fatemieh, R. Shankesi, D. Jin, and C. A. Gunter, “Reconstructing Hash Reversal based Proof of Work Schemes,” in Proc. 4th
USENIX Workshop Large-Scale Exploits Emergent Threats, 2011.

[3] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and timed-release crypto,” Dept. Comput. Sci., Massachusetts Inst. Technol., Cambridge,
MA, USA, Tech. Rep. MIT/LCS/TR-684, Feb. 1996. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.5709

[4] W.-C. Feng and E. Kaiser, “The case for public work,” in Proc. IEEE Global Internet Symp., May 2007, pp. 43–48.
[5] D. Keppel, S. J. Eggers, and R. R. Henry, “A case for runtime code generation,” Dept. Comput. Sci. Eng., Univ. Washington, Seattle, WA, USA, Tech.

Rep. CSE-91-11-04, 1991.
[6] E. Kaiser and W.-C. Feng, “mod_kaPoW: Mitigating DoS with transparent proof-of-work,” in Proc. ACM CoNEXT Conf., 2007, p. 74.
[7] NVIDIA CUDA. (Apr. 4, 2012). NVIDIA CUDA C Programming Guide, Version 4.2. [Online]. Available: http://developer.download.nvidia.com/
[8] X. Wang and M. K. Reiter, “Mitigating bandwidth-exhaustion attacks using congestion puzzles,” in Proc. 11th ACM Conf. Comput. Commun. Secur.,

2004, pp. 257–267.
[9] M. Jakobsson and A. Juels, “Proofs of work and bread pudding protocols,” in Proc. IFIP TC6/TC11 Joint Working Conf. Secure Inf. Netw., Commun.

Multimedia Secur., 1999, pp. 258–272.
[10] D. Kahn, The Codebreakers: The Story of Secret Writing, 2nd ed. New York, NY, USA: Scribners, 1996, p. 235.

