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Abstract: With the availability of text data in various forms on social media platforms, text mining, and sentiment analysis has 
received huge attention. The task of deriving information from this volume of data to extract knowledge is very complex and 
expensive because it is usually unstructured and contains noise. Recently, there is a growing need for implementing various 
approaches and models for efficiently processing this type of data and extracting useful information. This process is known as 
sentiment analysis, which includes: data gathering, data pre-processing, feature engineering and labeling, finally the application 
of various natural language processing and machine learning algorithms. This paper provides an overview of the most recent 
methods used in text mining and sentiment analysis along with their detailed description and a discussion of obtained results. 
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I. INTRODUCTION 
Sentiment analysis SA is an active research field in Natural Language Processing (NLP), where people’s emotions, opinions, and 
sentiments towards different entities like products, services, and organizations are studied and analyzed. Sentiment analysis is 
important for companies, organizations and individual persons [1]. Sentiment analysis can be applied to various sectors such as E-
commerce, banking, mining social media websites like Facebook, Twitter and so on. By taking advantage of sentiment analysis and 
text mining, organizations can gain consumer insight from the responses (reviews) about their products and services. This can be 
further used to study customers’ satisfaction with the services and in case of complaints and issues, finding the possible reasons for 
that. The main domain where sentiment analysis is applied is recommendation systems, for instance, consumers’ likes, dislikes, and 
comments are collected and analyzed and later used to provide Youtube recommendations. In this paper, we provide an extensive 
study of several most recent sentiment analysis techniques that had been applied to various domains in a multilingual format and 
from different resources. Typically, a sentiment analysis framework architecture is divided into the following tasks: data acquisition, 
data pre-processing, data normalization, data conversion also known as vectorization, features selection, and finally applying NLP 
and machine learning algorithms. The main purpose of this paper is to provide a literature review on recent trends in text mining and 
sentiment analysis along with a comprehensive description of each approach. For instance, consumer review mining and application 
to Business Intelligence (BI) and Big Data analytics are the current successful applications. The contribution of this review is 
significant for many reasons. Initially, this review provides an elaborate extensive study of a large number of recent articles 
according to the techniques used. This perspective aims to help researchers with good knowledge of the sentiment analysis field to 
use these methods and choose a suitable technique for their applications. Second, the different techniques of SA that we studied are 
categorized with brief details (see Table.1) of the used algorithms and their emerging sources. This can provide newcomers a broad 
landscape on the entire SA field. Finally, the publicly available benchmarks data sets are described and categorized depending on 
their domain application. This paper is organized as follows: Section 2 includes the review of recent research in the SA field and a 
summary of the articles. Section 3 tackles the research gaps in the studied articles and Section 4 discusses the experimental results 
of the surveyed articles, and finally, the conclusion and future work are presented in Section 5. 

II. LITERATURE REVIEW 
A. Document level 
In [8] sentiment analysis was used to perform natural language processing aiming to detect the polarity of a text document. At first, 
they tackled a binary classification problem where only positive and negative sentiments were discriminated against. Various 
machine learning techniques were fitted with this problem. Their results were easily reproducible for they used IMDB dataset. A 
simple and powerful method was proposed for sentiment analysis. They had combined three conceptually different baseline models: 
first one based on language models, the second one based on consecutive models of sentences and the last one based on the BOW 
(Bag of Words) model. This paper helped in determining how to use this in standard generative language models. They included a 
code that is available publicly at http://github.com/mesnilgr/iclr15.  
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[4] stated that in sentiment analysis the polarity of a given text is determined either using a machine learning approach or lexicon-
based approach. In their work, they used machine learning approaches such as Naive Bayes and SVM. To perform their sentiment 
analysis task the classifiers they executed on the datasets were Naïve Bayes, Support Vector Machine (SVM) and K-Nearest 
Neighbour (KNN (k=10)). Their results showed that SVM gave the highest score in terms of precision and KNN gave the highest 
recall. They used 10-fold cross-validation to test the datasets. They demonstrated that the precision achieved by SVM 75.25% was 
the best precision and the recall got by KNN 69.04% was the best recall. Therefore bigger datasets were required to provide the best 
classification results. 
[5] implemented a new feature type to check its contribution in document-level sentiment analysis. They attained best results on 
dataset produced by [6] containing 2000 reviews with 91.6% accuracy than by [7] containing 50000 reviews with 89.87% accuracy. 
They also applied sentiment analysis on a dataset containing 233600 reviews and their proposal achieved 93.24% accuracy. In this 
paper, an experimental study on sentiment polarity classification had been conducted. First of all, a rating based feature had been 
described which was based on the regression model, and learned from an external independent dataset of 233600 movie reviews. 
Afterward, the contribution of both machine learning and rating based criteria were used to achieve accuracy of 91.6% and 89.87% 
on the datasets from different domains. These results showed that rating based feature was more efficient for sentiment classification 
on polarity reviews and by adding bi-gram and tri-gram features the performance could be improved. 
[9] presented that the reviews and blog datasets obtained from the social networking sites were unsystematic and need a 
classification for meaningful information. These reviews could be classified as positive, negative and neutral using supervised 
machine learning methods. In this particular work, they introduced four different machine learning algorithms: NB (Naive Bayes), 
ME (maximum entropy), SGD (stochastic gradient descent) and SVM (support vector machine) for sentiment classification. They 
used precision, recall, F-measure, and accuracy as evaluation metrics for the proposed models. This paper helped in classifying the 
movie reviews using supervised machine learning algorithms which was further applied to the IMDB dataset using the n-gram 
approach. The results of this paper gave several insights; they concluded the classification accuracy decreases as the value of n 
increases in the n-gram way; better accuracy was obtained when TF-IDF and count vectorizer techniques were combined. Following 
a deeper study, they faced some limitations due to the small size of tweets, reviews or comments and the fact that this type of data 
includes punctuation symbols and words like “greatttt, fineee” as they don't have proper meaning. To solve the problem a lexicon 
was created for sentiment classification after removing the stop words to select the best feature. And last, hybrid machine learning 
techniques were also considered for better accuracy (see Table.2 below)  
[10] analyzed online audits and film ratings using a content-based sentiment analysis approach. Supervised machine learning 
strategies were used to group these reviews. For conclusions three different machine learning algorithms were considered; SVM, 
ME, NB and these were based on evaluation parameters such as accuracy, review, f-measure, and precision. In this paper for 
classifying film reviews from the rottentomatoes dataset, the authors used the n-gram method where different machine learning 
techniques had been suggested. This research main conclusion was that in comparison with other research works their results 
obtained the best accuracy. 

B. Sentence Level 
[3] proved that for text classification different alternatives of machine learning algorithms show a large variation in their 
performance. They also demonstrated how Naive Bayes (NB) was more suitable than Support Vector Machines (SVM) for a small 
part in sentiment tasks in addition to bi-gram results that showed constant improvements in tasks. They also proposed a new SVM 
variant that showed better consistent results on datasets and resulting in this information they demonstrated NB and SVM variants. 
This paper resulted in several conclusions: Multinomial Naive Bayes (MNB) was a better choice for sentiment analysis tasks; SVM 
was more preferred on long reviews; the performance of bi-grams depends on the sentiment tasks; They also concluded that NB-
SVM generated the best results and Bernoulli Naive Bayes (BNB) produced poor results compared to MNB.  
In [11] Alomari claimed that Arabic tweets pose a good opportunity for opinion mining research but they were set back due to lack 
of sentiment analysis resources or challenges in Arabic language text analysis. Their work included an Arabic Jordanian twitter 
corpus in which the tweets were labeled as positive or as negative. These tweets were analyzed using different supervised machine 
learning approaches. Several techniques experiments were conducted using different weight schemes, stemming and n-grams. This 
initiative showed that the SVM classifier using TF-IDF through bi-grams feature was better as compared to the Naive Bayesian 
classifier. The main objective was to examine the machine learning approach for Arabic sentiment analysis. Firstly, the authors 
collected a new publicly available Arabic tweet corpus containing 1,800 tweets written in the Jordanian dialect. Afterward, various 
n-grams with different weighting schemes and stemming techniques were used to compare SVM and NB classifiers. Following an 
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experimental study they finally concluded that the SVM classifier using a combination of TF-IDF weighting scheme with stemmer 
through bi-grams showed 88.72% accuracy and 88.27% f-score, their model performed better than other Arabic sentiment analyses 
research results. In the work of [12], sentiment analysis was applied to analyze and extract the polarity of sentiment from product 
reviews (laptop and restaurant) collected in the SemEval 2014 Task 4 dataset. They conducted an aspect-based sentiment analysis 
approach which consisted of studying specific aspects of products such as food, service, price, and ambiance (see Table.1). This 
research was conducted following three phases; data pre-processing which involved part-of-speech (POS) tagging, feature selection 
using Chi-Square for, it has been proven to speed up the computation time in the classification process, and classification of 
sentiment polarity of aspects using Naïve Bayes classifier. Based on their evaluation results, the proposed system gave promising 
output and was able to perform aspect-based sentiment analysis with its highest F1-Measure of 78.12%. 
In the work of [17], the goal was to find out why RNN and LSTM models work well for sentiment analysis and how these models 
work. Their research was based on the principle of compositionality, which states that the meaning of a longer expression depends 
on the meaning of its predecessors. RNNs were used to perform sentiment analysis because they allow the network to have a 
memory. Since the author dealt with sequenced text data, having a memory in a network is useful because the meaning of a word 
depends on the context of the previous text. The main drawback of the RNN is that its capacity of only dealing with short-term 
dependencies. To deal with this problem they used a combination of both RNNs and LSTM. To illustrate how an LSTM can be used 
for sentiment classification, a network consisting of four layers: the input layer, the embedding layer, the LSTM layer, and the 
output layer was built to classify the sentiment of the IMDB dataset. The dataset contained reviews of 50,000 movies. Each movie is 
labeled with a 0 or a 1, indicating a negative or positive review. Only the top 10,000 most frequently occurring words were used. 
The model has been trained using word embeddings as a feature. It was very sensitive to overfitting, so the model was stopped from 
training after the fifth epoch. The final model resulted in a loss and accuracy on the validation set of 0.4366 and 0.8674, 
respectively. This was already a pretty good result. The parameters in the model have not yet been trained, performing a grid search 
on the parameters could possibly lead to a better performance of the model. 
[18] proposed an ensemble classifier that combines the base learning classifiers such as Naive Bayes, Random Forest, Support 
Vector Machines (SVM) and Logistic Regression to form a single classifier. Their proposal aimed at improving the performance 
and accuracy of sentiment classification techniques. The proposed architecture included four modules - (1) Data pre-processing 
module: for pre-processing the data (2) Feature representation module: for feature extraction from pre-processed tweets, BoW 
technique was used for converting tweets into numeric representation (3) Sentiment classification using base classifiers: in which 
different base classifiers were implemented for sentiment analysis and finally (4) Sentiment classification using the proposed 
ensemble classifier. The implementations were done in Python. The results showed that the proposed ensemble classifier performed 
better than stand-alone classifiers and majority voting ensemble classifier. Also, as part of their study, the role of data pre-
processing and feature representation in sentiment classification technique was explored. 
Badr [19] presented an approach for sentiment analysis, which was realized adopting fastText with recurrent neural network variants 
to represent textual data efficiently. Its main goal was to improve the performance of common Recurrent Neural Network (RNN) 
variants regarding classification accuracy and deal with large scale extensive data. Besides, a distributed intelligent system for real-
time social big data analytics was introduced. The system was developed to ingest, store, process, index, and visualize the 
voluminous amount of information in real-time. The proposed system followed distributed machine learning with the proposed 
model for enhancing decision-making processes. Extensive experiments were conducted on two benchmark data sets (Yelp and 
Sentiment140) demonstrated that their proposal for sentiment analysis outperformed well-known distributed recurrent neural 
network variants. Their proposal showed higher accuracy and F-score than other state-of-the-art methods. It significantly 
outperformed other results on both data sets (i.e. Yelp and sentiment140). Given the obtained results, it is reasonable to conclude 
that their proposal was able to enhance the performance of several existing methods and thus contribute to more efficient models for 
big data sentiment analysis. 

C. Word Level 
Kouloumpis [2] demonstrated the impact that feature selection has on the model’s performance. They used linguistic features and 
existing lexical resources used in micro-blogging to detect the sentiment orientation of Twitter messages. From their work, the 
researchers concluded that POS (Part-of-Speech) features and features from existing sentiment lexicons were useful but not as the 
features found in Twitter messages. They also came with the conclusion that the training data will be of less benefit if they include 
micro-blogging features.  
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So in Law [13] focused their study on the domain of underperformance in large home appliances precisely dishwashers. They 
developed two domain-specific dictionaries related to dishwasher defects (sparkle and smoke). Their research was very useful for 
improving the quality of dishwasher appliances. The authors conducted different experiments to detect the defects in the products. 
In their first experiment, the Afinn lexicon was used to detect the defects but they concluded that the remaining sentiment analysis 
techniques performed better than uni-gram, bi-grams and tri-grams (see Table.1). From the second experiment they came with the 
conclusion that in discovering the defects logistic regression, neural network and decision tree classifiers performed better. Using 
domain-specific terms suggests that the user was satisfied with the product or design and these terms were having a high effect on 
all the used models. The best results were achieved by Neural Networks and the negative online reviews had an unfavorable effect 
on sales, brand reputation, and company profits.  
The approach implemented in the work of Malik [14] is a modification of the approach stated in [15]. For their extended study, 100 
reviews about the product ‘Fit-Bit’ were crawled from the well-known e-commerce website amazon.com. For their sentiment 
classification based on an ontology framework they used different attributes along with their corresponding polarity values i.e. 
(Battery, 2), (Display, 2),(Accuracy, 2), (Waterproof, -3), and (Synchronization, 1). To capture users’ preferences over different 
product aspects and attributes they used the formula for calculating the OGC values defined in [16] where; orientation of comment 
based on the sentiment value z, group of customer g, and feature or category of product c. Experimental results were based on a 
random set of reviews which showed that by assigning weights to the attributes depending upon the priority that the user wishes to 
assign, it has been observed that the proposed ontology model works effectively. The result obtained proved that when the buyer’s 
choice is the most specific the more the decision-making process is accurate. 

 
Table 1. Identification of the main themes across the research surveyed. 

Authors/ year Task Domain 
dependence 

(Y/N) 

Language 

Kouloumpis et al. (2011) Word level twitter sentiment analysis N English 
Wang et al. (2012) Sentence level text classification N English 
Mensil et al. (2014) Document level text classification N English 
Duwairi et al. (2014) Document level text categorization N Arabic 
Nguyen et al. (2014) Document level sentiment analysis N English 
Tripathy et al. (2016) Document level systematic text classification N English 

Law et al. (2017) Word level sentiment analysis Y English 
Tiwari et al. (2017) Document level content based analysis N English 

Alomari et al. (2017) Sentence level twitter sentiment analysis N Arabic 
Mohamed et al. (2017) Sentence level aspect based sentiment analysis Y English 
Fenna Miedma (2018) Sentence level sentiment analysis N English 

Malik et al. (2018) Word level aspect based sentiment analysis Y English 
Ankit et al. (2018) Sentence level sentiment analysis N English 
Badr et al. (2020) Sentence level data analytics N English 

Table.2 Detailed summary of the most recent studies in sentiment analysis. 
Researcher’s 
name/ year 

 

Algorithm and 
used features 

Dataset Dataset description Highest obtained results 

Duwairi et al. 
(2014) 

 
 

Naive Bayes 
SVM Support 
Vector Machine   
K-Nearest 
Neighbour (KNN) 

Arabic text corpus   1,000 documents that vary in length and writing style were 
collected. 10 predefined categories 
(sports,economic,Internet,art,animals,technology,religion,politic
s,plants and medicine) where every category contains 100 
documents.   

Precision SVM 
75.25 % 
 
Recall KNN  
69.04% 

Kouloumpis et al.  
(2011) 

Linguistic (n-
grams and POS) 
and lexicons 
(MPQA and ILD) 

HASH 
Edinburgh 
EMOT 
and iSieve 
 

Collection of tweets with positive ‘:)’ and negative ‘:(’ 
emoticons. It contains 381,381 tweets, 230,811 positive and 
150,570 negative. 

75% 

Wang et al. 
(2012) 

NB, Multinomial 
Naive Bayes 
(MNB), SVM, N-
gram, Bag of 

RT-s: movie 
reviews 
CR:Customer 
review dataset  

Short movie reviews dataset containing one sentence per review 
[6] 
CR: dataset is processed like in [20] 
Opinion polarity subtask of the MPQA dataset [21] 

MNB-uni (Subj 92.6%) 
MNB-bi (RT-s 79%, MPQA 
86.3%, Subj 93.6%) 
SVM-bi (MPQA 86.7%) 
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Words (BoW) 
 
 
 

MPQA 
Subj dataset 
RT-2k dataset 
IMDB 
 

The subjectivity dataset with subjective reviews and objective 
plot summaries [6] 
The standard 2000 full-length movie review dataset [6] 
A large movie review dataset with 50k full-length reviews [7] 

NBSVM-uni (RT-s 78.1%) 
NBSVM-bi (RT-s 79.4%, 
MPQA 86.3%, CR 81.8%, Subj 
93.6%) 

Mesnil et al. 
(2014) 

Recurrent Neural 
Networks (RNNs), 
NB-SVM, Logistic 
Regression (LR) 
with N-grams, tf-
idf and word 
embeddings as 
features 

IMDB movie 
reviews 
 

A large movie review dataset with 50k full-length reviews [7] NB-SVM-3-grams (91.87%) 
N-grams (86.5%) 
All (92.57%) 

Tripathy et al. 
(2016) 

NB, Maximum 
Entropy ME, 
SVM, Stochastic 
Gradient Descent 
SGD with  
N-grams and tf-idf 
features 

IMDB movie 
reviews 
 

A large movie review dataset with 50k full-length reviews [7] NB 86.23% 
ME 83.36 % 
SVM 70.16% 
SGD 83.36% 

Law et al. 
(2017)  

Logistic regression 
Neural Networks 
Decision trees 
2 domain specific 
dictionaries 
(sparkle and smoke 
related terms) 
AFINN lexicon 
N-grams 

Product reviews 
specific to 
dishwashers 

  

Nguyen et al. 
(2014) 

 

SVM 
Rating-feature 
(regression model) 
N-grams 

PL04  
IMDB dataset  
 

PL04: (movie reviews) 1000 pos, 1000 neg 
 
IMDB: (movie reviews)  
50000 reviews. 

PL04 91.6% 
IMDB 89.87% 

Tiwari et al. 
(2017) 

 

SVM  
Maximum Entropy 
Naive Bayes 
N-grams and TF-
IDF 

Rottentomatoes 
(reviews and 
rating) 
 

Contains information about movies: synopsis, 
rating,genre,director,writer,theatre_date,DVD_date,currenc
y,box_office, runtime,studio.  

SVM-unigram 87.53% 
ME-unigram-bigram 89.64% 
NB-unigram-bigram 87.08% 

Alomari et al. 
(2017) 

SVM, NB with 
different weights 
(TF-IDF and TF), 
Stemming and N-
grams 

AJGT Arabic 
Jordanian Twitter 
corpus 
 
 

1,800 tweets annotated as positive and negative. Modern 
Standard Arabic (MSA) or Jordanian dialect. 
 

SVM-accuracy (88.72%, F-score 
88.27%) 
NB-accuracy (83.61%, F-score 
84.73) 

Fenna Miedma 
(2018) 

LSTM and RNN 
Word embeddings 

IMDB dataset 
 

A large movie review dataset with 50k full-length reviews 
[7] 

86.74% 

Malik et al. (2018) Attribute scores and 
weights 
 

E-commerce 
reviews Amazon 
(Fit-Bit) 

(130M+ customer reviews)  

Badr et al. (2020) RNN 
Long Short Term 
Memory (LSTM) 
Bidirectional Long 
Short-Term Memory 
(BiLSTM) 
Gated Recurrent 
Unit 
(GRU) with 
FastText as word 
embedding  
 
 

 
Yelp 
 
Sentiment140 

Yelp dataset is composed 6,685,900 classified reviews 
provided by 1,637,138 users for 192,609 businesses.  
 
Sentiment140: Twitter sentiment analysis data set, which is 
originated from Stanford University. This particular data 
set consists of 1,600,000 classified tweets. In this work, we 
have randomly selected 20,000 tweets as the original data 
set 
 

Sentiment140 (LSTM-accuracy 
78.09%, F-score 78.43%) 
(BiLSTM-accuracy 87.76%, F-
score 78.65%) 
(GRU-accuracy 78.88%, F-score 
79.02%) 
Yelp (LSTM-accuracy 92.55%, 
F-score 92.69%) 
(BiLSTM-accuracy 92.91%, F-
score 92.95%) 
(GRU-accuracy 93.28%, F-score 
93.10%) 

Mohamed et al. 
(2017) 

Naive Bayes 
Part Of Speech 
tagging (POS), Chi-
Square 

SemEval 2014 
Task 4 reviews 
dataset 

(product reviews such as laptops/ restaurants) F-score 78.12% 
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III. RESEARCH GAPS 
After a comprehensive study of the research surveyed, several gaps manifested; on one hand, from the work of Kouloumpis [2], we 
concluded that POS (Part-of-Speech) features and features from existing sentiment lexicons were useful but not as the features 
found in Twitter messages. We also came with the conclusion that the training data will be of less benefit if they include micro-
blogging features. On the other hand, since Twitter comments are mostly small in size, therefore, the proposed approaches in [2], 
[12], [18] may have some issues while considering these reviews. Another issue remains considering that different reviews or 
comments contain symbols known as emojis like (:), :(, thumbs up, thumbs down) which help in manifesting user’s sentiment, but 
these being images were not taken into consideration in the surveyed research for further analysis.  
As illustrated in Table 1. the work of [13], [14] was domain-dependent where lexicons were manually generated; one was specific to 
dishwasher’s defects and the other was specific to Fit-bit evaluation aspects as shown in Table 2. but the main gap resides on the 
fact that using a dictionary-based approach has a major disadvantage which is the inability to find opinion words with domain and 
context-specific orientations. Besides, it is observed that better results are achieved when working on the domain-dependent corpus 
than working on the domain-independent corpus. Since creating the domain-specific corpus is more complex than using the domain-
independent one, there is still a lack of research in the field of domain-dependent sentiment analysis which is known as context-
based analysis. Last, to give stress on a word, it is observed that some users often repeat the last character of the word several times 
such as “greatttt, Fineee”. These words do not have real meaning, but they may be examined and further processed to distinguish 
sentiment. However, this aspect was only considered in the work of [9]. 
 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
This review has reported a large selection of studies related to sentiment analysis using supervised learning as summarized in Table 
1. After analyzing all these studies, it is established that sentiment analysis can be accomplished more efficiently and accurately by 
using deep learning methods. The main purpose of sentiment analysis task is to predict users’ opinions and deep learning models are 
all about the prediction of the human mind, thus, these models yield more accuracy than superficial models. Deep learning networks 
are better than SVMs and standard neural networks because they have more hidden layers as compared to normal neural networks 
with only one or two layers. Deep learning networks are capable to provide training in both supervised/unsupervised ways. Deep 
learning models implement automatic feature extraction and do not involve human intervention, therefore, it can save time because 
feature engineering is not needed. Still, this method suffers from some limitations as well, as compared to previous models such as 
SVM. It requires large data sets and is tremendously costly to train. These complex models can obtain weeks to train by using 
machines equipped with expensive GPUs. The data used in sentiment analysis are mostly on product reviews as shown in Table 2. 
The other kinds of data are news articles or news feeds; web Blogs, social media, and others. We were interested too in seeing if the 
data used in the surveyed articles was domain-dependent or not Table 1. Sentiment analysis using other languages has engaged 
many researchers recently as shown in Table 1. These languages include Spanish, Italian, German, Far East languages (Chinese, 
Japanese); and Middle East languages (Arabic). But still, the English language is the main used language for sentiment analysis due 
to the following reason; data availability with resources such as lexica, corpora, and dictionaries. This represents a new challenge to 

Ankit et al. (2018) Naive Bayes 
Random Forest 
SVM 
Logistic Regression 
Bag of Words 
(BoW) 

Sentiment140 
corpus 
 
HealthCare 
Reform (HCR) 
 
GOP 
 
Twitter sentiment 
analysis dataset 

Sentiment140 corpus This is a Twitter sentiment analysis 
data set, which is originated from Stanford University. This 
particular data set consists of 1,600,000 classified tweets. In 
this work, we have randomly selected 20,000 tweets as the 
original data 
Set. 
HealthCare Reform (HCR) This dataset contains a set of 
tweets with the #hcr. The tweets with positive sentiment 
and negative 
sentiment are considered for the experiment. This dataset 
consists of 888 tweets (365 positive and 523 negative). 
GOP: This dataset consists tweets on the first GOP debate 
for the 2016 presidential nomination. It contains 13871 
tweets with the positive, negative or neutral sentiment.  
Twitter sentiment analysis dataset This dataset has 99989 
training tweets. Each tweet is either positive or negative. 
This dataset consists of 43532 
negative and 56457 positive tweets. This dataset is 
available at Kaggle. 

Sentiment140 (accuracy 75.81%, 
F-score 75.79%) 
 
HealthCare Reform (accuracy 
73.68%, F-score 70.28%) 
 
GOP (accuracy 85.83%, F-score 
76.85%) 
 
Twitter sentiment analysis 
dataset (accuracy 74.67%, F-score 
73.33%) 
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researchers to build lexica, corpora and dictionaries resources for other languages. Some additional insights were drawn while 
studying recent articles, we have discovered some points that could be considered open problems in research. 
1) The Data Problem: It has been observed that there is a need for benchmark data sets in the SA field. It was expressed in [25] 

that a small number of most famous data sets are in the field of sentiment analysis. In Table 2., the most popular data sources 
and data sets used to accomplish the different tasks of sentiment analysis are presented. It can be noticed that Sentiment140, 
Health Care Reform (HCR), GOP, PL04, HASH, and iSieve are used in Twitter sentiment analysis articles. IMDB, Yelp, 
Amazon.com, and rottentomatoes are very famous data sources of review data (Table 2.). These data sets are used in sentiment 
analysis and sentiment classification tasks.  

2) The Language problem: It was noticed in the articles presented in this survey that the English language is mostly used in the 
sentiment analysis field. Appropriately, many data sources are built for this language. There is still a lack of resources for the 
Middle East languages including the Arabic language. Even though the resources built for the Arabic language are not yet 
complete and not found easily as an open-source. This makes it a very good trend in research now. 

3) Natural language processing: The natural language processing tools like Python's NLTK package and Vader lexicon [26] can 
be used to facilitate the sentiment analysis process. It gives better natural language understanding and thus can help obtain more 
accurate results. This provides a novel trend of research using NLP as a pre-processing phase before sentiment analysis. 

Figure 1. Summary of best achieved performance in terms of accuracy, recall and F-score 
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V. CONCLUSION 
In this paper, we provide both a survey and comparative study of recent techniques for sentiment analysis including machine 
learning and lexicon-based approaches. For our study, we considered both cross-domain and cross-lingual methods and some 
evaluation metrics such as accuracy, recall, and F-score. Research results show that machine learning methods, such as SVM and 
Naive Bayes have the highest accuracy and can be regarded as the baseline learning methods, while lexicon-based methods are very 
effective in some cases, which require few efforts in a human-labeled document. We also studied the effects of various features on 
the classifier. We can conclude that cleaner data, more accurate results can be obtained. The use of the bi-gram model provides 
better sentiment accuracy as compared to other models. Future work includes an extensive comparison of different text mining and 
sentiment analysis approaches on different data sets acquired from multiple resources and in multiple languages. We will also work 
towards finding the most computationally inexpensive algorithms for various tasks and sub-tasks. Various prediction applications 
will also be studied. 
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