

2 III March 2014

www.ijraset.com Vol. 2 Issue III, March 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 60

An Evolutionary Algorithm for Automated Test
Data Generation for Software Programs

Preeti, Kompal Ahuja(Assistant Professor)

DCRUST, Murthal, Haryana (INDIA)

DITM, Gannaur, Haryana (INDIA)

Abstract: Software testing takes a considerable amount of time and resources spent on producing software it would be useful to have ways
to reduce the cost of software testing so one of them is automatic test data generator- a system that automatically generates test data for a
given program. This paper presents a Big Bang-Big Crunch concept based search algorithm for automatic generation of structural
software tests. Big Bang-Big Crunch algorithm is a new meta-heuristic population based algorithm that relies on one of the theories of
evolution of universe, namely, the Big Bang-Big Crunch theory.

Keywords: Big Bang-Big Crunch algorithm, Software Testing, Path Generator, Automatic test data generator, Fitness function

I. Introduction
Software testing is a main method for improving the quality
and increasing the reliability of software. It is a kind of
complex, labour-intensive and time consuming work.
Software testing accounts for 50% of the total cost of software
development. This cost could be reduced if the process of
testing is automated. Automatic test data generator – a system
that automatically generates test data for a given program.
Test data generation in software testing is the process of
program input data, which satisfy a given testing criterion. A
meta-heuristic is a higher level procedure or heuristic
designed to find, generate or select a lower level procedure or
heuristic that may provide a sufficiently good solution to an
optimization problem. Big Bang and Big Crunch algorithm is
a new meta-heuristic population based algorithm that relies on
one of the theories of the universe, namely the Big Bang and
Big Crunch theory.

II. Meta-heuristic Search Algorithm

A meta-heuristic is a higher level procedure or heuristic
designed to find, generate or select a lower level procedure or
heuristic that may provide a sufficiently good solution to an
optimization problem. Meta-heuristics are generally applied to
problems for which there is no satisfactory problem-specific
algorithm or heuristic; or when it is not practical to implement

such a method. Most commonly used Meta-heuristics are
targeted to combinatorial optimization problems, but of course
can handle any problem that can be recast in that form, such
as solving Boolean equations.

Soft computing and heuristic based techniques such as
evolutionary algorithms, fuzzy modelling, neural networks
and swarm intelligence based algorithms have found several
applications in software engineering domain. Some of these
applications are cost/effort estimation for better resource
utilization and allocation in software development
[Burgess2001, Shukla2000], automated software testing for
cost cutting and making software more reliable
[Michael2001], module clustering for effective maintenance
[Mitchell2006] and software project management activities
such as resource scheduling [Alba2007]. Considerable effort
has been put in by various researchers to apply soft computing
in the area of software engineering [Harman2001,
Mantere2005]. One of the most intensively applied areas of
soft computing in software engineering is test data generation,
which is categorized as NP-hard [Yuan2005] or NP-complete
[Mansour2004] problem due to requirement of enormous
efforts in finding the data out of large search space satisfying
the complex and non-linear search objectives. Some of the
meta-heuristic search techniques which we have employed for

www.ijraset.com Vol. 2 Issue III, March 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 61

our experimentation are described below with their respective
algorithm workflow.
A. Big Bang and Big Crunch Search Algori thm

Big Bang and Big Crunch algorithm is a new meta-heuristic
population based algorithm that relies on one of the theories of
the evolution of universe, namely the Big Bang-Big Crunch
theory. The Big Bang and Big Crunch theory is introduced by
Erol and Eksin [Erol2006], which is based upon the analogy
of universe evolution. It has two phases viz 1. Big Bang Phase
and 2. Big Crunch Phase.

In Big Bang phase, candidate solutions are randomly
distributed over the search space and in the Big Crunch phase,
randomly distributed particles are drawn into an orderly
fashion. The Big Bang-Big Crunch optimization method
generates random points in the Big Bang phase and shrinks
these points to a single point in the Big Crunch phase. The Big
Crunch phase has a convergence operator that has many
inputs but only one output, which is named as the “centre of
mass”, since the only output has been derived by calculating
the centre of mass. This concept can be mathematically
simulated by obtaining object function values by creating
random control variables (Big -Bang) phase. The Centre of
Mass (CM) of Big-Bang phase is drawn into an ordered state
by a Big- crunch phase.

Algorithm 1 BBBC Search Algorithm Workflow

1. Create random population of solution.
2. Evaluate Solutions.
3. The fittest individual can be selected as the centre of

mass.
4. Calculate new candidates around the centre of mass

by adding or subtracting a normal random number
whose value decrease as the iteration elapse.

5. The algorithm continues until predefined stopping
criteria has been met.

In fact, the Big Bang phase dissipates energy and
produces disorder and randomness. In the Big Crunch phase,
randomly distributed particles (which form the solution when
represented in a problem) are arranged into an order by way of
a convergence operator “centre of mass”. The Big Bang–Big
Crunch phases are followed alternatively until randomness
within the search space during the Big Bang becomes smaller
and smaller and finally leading to a solution. Above in the
algorithm 2.1 is given the algorithm for the BBBC algorithm

and the steps are included according to that particular
algorithm.

III. Test Data Adequacy Criteria

Suitability of the individuals can be assessed by following a
testing criterion for which a unique fitness function has to be
defined. In structural testing, these criteria can be anything
from all-statement-execution to all-path-coverage
[Frankl1988]. We have chosen the all-path coverage criterion
for our experimentation because one, it is the hardest to follow
and second, in true sense, it is the real representative of
structural testing. Very few test data generators have followed
this criterion. The path testing method involves generation of
test data for a target feasible path in such a way that on
executing program, it covers all branches on that path. To
cover a particular branch, the condition(s) at branch node must
be satisfied by the test data, which directs the control flow of
program to the next branch of the path. A path may contain
several branches and in order to execute that path, all these
branch- conditions must be evaluated true by the test data.
Consequently, problem of path testing can be formulated
simply as constraint satisfaction problem which should be
analyzed and solved with the help of some search method by
generating inputs in such a way that can satisfy all the branch
constraints on the path.

A valid test case is generated, which should execute the
particular path by satisfying all of the boolean expressions
included in that path. Figure 1 shows the different building
blocks of a path based automatic test data generator. First test
object source code is fed to program instrumentation for CFG
and node expressions generation. Subsequently CFG is used
to generate all possible paths which are filtered manually for
feasible path in order to become input to search algorithm.
Node expressions include branch node predicates as well as
non-branch node statements which are used to evaluate
candidate solutions in test object fitness functions.

www.ijraset.com Vol. 2 Issue III, March 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 62

Figure 1 Path based Automatic Test Data generator

A. Fitness Function

For path testing criterion, in order to traverse a feasible path,
the control must satisfy the entire branch predicates, which
falls on that particular path. In our experimentations, we have
used symbolic execution technique of static structural testing.
So, corresponding to each path a compound predicate (CP) is
made by ‘anding’ each branch predicate of the path. The CP
must be evaluated to true by a candidate solution in turn to
become a valid test case. The BBBC generates population of
candidate solutions and these are used to evaluate CP. If
predicate is not evaluated to true by an individual then all the
constraints of particular path are split into distinct predicate
(DP) and one by one each DP is evaluated by taking values of
its operands from candidate solution. A DP is that one, which
contains only one operator (a constraint with modulus
operator is exception) and can be expressed in form of
expression A op B where A and B are LHS and RHS of
expression made of one or more operand(s) and op is
relational operator. If DP is satisfied then no penalty is
imposed to candidate solution, otherwise candidate solution is
penalized on the basis of branch distance concept rules as
shown in table 1 which is also recommended by [Watkins et al
3] for static structural testing.

Table 1 Fitness Function For Branch Predicate

Violated Predicate Penalty to be
imposed in case
predicate is not
satisfied

A < B A – B + ζ
A ≤ B A – B
A > B B – A + ζ
A ≥ B B – A
A = B Abs(A – B)
A ≠ B ζ- abs(A – B)

ζ is a smallest constant of operands’ universal domain

After this integrated fitness due to whole of CP is determined
by adding penalty values of two DPs, if they are connected by
a conditional ‘and’ operator. If two DPs are connected by a
conditional ‘or’ operator then minimum penalties of two DPs
is considered for the evaluation of whole CP fitness. If
integrated fitness is zero then CP is called evaluated otherwise
search is allowed to proceed further.

IV. CONCLUSION
A new approach for automated test data generation is
evaluated the name of which is Big Bang-Big Crunch
algorithm is used for test case generation. Static testing based
symbolic execution method has been used in which first,
target path is selected from CFG of program and then inputs
are generated using the BBBC method to satisfy composite
predicate corresponding to the path. It has been observed that
the BBBC method is better alternative than random testing.

REFERENCES
[1] J. Wegener, A. Baresel and H. Sthamer, “Evolutionary test

environment for automatic structural testing,” Information and Software
Technology, 2001; Vol. 43.

[2] R. Pargas, M. Harrold and R. Peck, “Test-data generation using genetic
algorithms,” Journal of Software Testing, Verification and Reliability 1999;
9(4): pp. 263–82.

[3] Surinder Singh and Parvin Kumar, “Application of Big Bang-Big Crunch
algorithm to software testing”,
International journal of Computer Science and Communication, 2012; Vol. 3

www.ijraset.com Vol. 2 Issue III, March 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 63

[4] Hakki Murat GENC, Ibrahim Eksin and Osman Kaan Erol, ”Big Bang-
Big Crunch optimization algorithm with local directional moves”, Turkish
Journal of Electrical Engineering and Computer Science, 2013.

[5] Cheshta Jain, H.K. Verma and L.D. Arya, ”Big Bang-Big Crunch based
optimized controller for automatic generation control and automatic voltage
regulator system”, International Journal of Science and Technology, 2011;
Vol.3

[6] K. Ayari, S. Bouktif and G. Antoniol, “Automatic mutation test data
generation via ant colony”, GECCO, 2011, London United Kingdom

[7] Abdelaziz M. Khamis, “Automatic software test data generation for
spanning sets coverage using genetic algorithm”, Computing and Informatics,
2007

[8] Pavel Y. Tabokov, ”Big Bang-Big Crunch optimization method in
optimum design of complex composite laminates”, World Academy of science
, engineering and technology, vol. 53, 2011

[9] S. Sakthivel, S. Arun Pandiyan, S. Marikani, S. Kurinji Selvi,
“Application of Big Bang-Big Crunch for optimal power flow problem”,
International Journal of engineering and science, Vol. 2, page 41-44, 2013

[10] A. Kaveh, S. Talatahari, “A discrete Big Bang-Big Crunch Algorithm for
optimal design of skeletal structures”, Asian journal of civil engineering, Vol.
11, 2010

