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The unpolarized gluon distribution functions have been obtained by solving Dokshitzer-Gribove-Lipatov-Alterelli-Parisi (DGLAP) 
evolution equations in LO and NLO at the small-x limit. Here we have used a Taylor series expansion and then the method of 
characteristics to solve the evolution equations. We have also calculated t and x-evolutions of gluon distribution functions and the 
results are compared with GRV1998 [1] and MRST2004 [2] gluon parameterizations. 

 
I. THEORY 

The DGLAP evolution equations in standard forms for unpolarized gluon distribution functions in LO and NLO [3-10] are 
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where functions  tx,I1
g  and  tx,I2

g  are defined in Appendix F. 

Let us introduce the variable u = 1� ω  and using Taylor’s expansion series we can rewrite  
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Since x is small in our region of discussion, the terms containing x2 and higher powers of x are neglected. Using equations (3a) and 
(3b) and performing u-integrations we get equation (1) of the form 
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Now let us assume,      tx,G xRtx,FS
2  , where R(x) is a suitable function of x or may be a constant. Now equation (8.4) 

gives  
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Now let us consider two new variables S and τ instead of x and t, such that 
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Putting these in equation (5), we get  
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For t-evolution, gluon distribution function varies with t remaining x constant. Hence equation (6a) can be used to solve the 
equation (7).  Now we have to replace the co-ordinate system (S, τ) to (x, t), considering when S = 0, t = t0 and the input function as 
   0tx,GτG  . So the t-evolution of gluon distribution function in LO is given by 
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Using equation (6b) and replacing the co-ordinate system (S, τ) to (x, t), with consideration when τ = 0, 0xx   and the input 

function as    t,xGSG 0 , the   x-evolution of gluon distribution function in LO is given by 
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Similarly the t and x-evolution of gluon distribution functions in NLO are given by 
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We also consider 
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II. RESULT AND DISCUSSIONS 
 Here we have compared our result of t-evolution for gluon distribution function G(x, t) in LO and NLO with GRV1998 global 
parameterizations [177] and x-evolution with GRV1998 and MRST2004 [178] parameterizations. We consider GRV1998 
parameterization for 10 ��� ≤ x ≤ 10 ��5 and 20  ≤  Q2 ≤ 40 GeV2, where they used H1 [182] and ZEUS [183] high precision data on 

G(x, Q2). They have chosen   114.0Mα 2
ZS  and   2464NΛ fSM  MeV. The input densities have been fixed using the 

data sets HERA [182], SLAC[184], BCDMS [185], NMC [113] and E665 [114]. The resulting input distribution at   Q2 = 0.04 GeV2 
is given by xg = 20.80 x1.6 (1-x)4.1. 

We have taken the MRST2004 fit to the H1 [53] and ZEUS [54] data with x < 0.01 and 2 ≤ Q2 ≤ 500 GeV2 for Q2 =100 GeV2, in 

which they have taken parametric form for the starting distribution at 22
0 1GeVQ  given by  
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g x1Axxγxε1x-1xAxg   , 

where power of the (1�x) factors are taken from MRST2001 fit [56]. Here δ andA  ,ε ,,λ,A gggg  are taken as free 

parameters. The optimum fit corresponds to   0.119Mα 2
ZS  and 323Λ SM  MeV with 4N f  .  

Our results represent the best fit graphs of our work with different parameterization curves. Results of parameterization at lowest-Q2 
values are taken as input to test the t-evolution equations and those at highest-x is taken as input to test the x-evolution equations. 
We have compared our results for R(x) as a constant R, a power function axb and an exponential function ce�dx. In our work for 
gluon distribution function, we have found the values of the gluon distribution function remains almost same for b<0.0001 and for 
d<0.001. So, we have chosen b = 0.0001 and d = 0.001 and the best fit graphs are observed by changing the values of R, a and c. If 
we plot T2(t) and T0T(t) against Q2, then we can see that for T0 = 0.048, the values of T2 and T.T0 are nearly same in our region of 
discussion, as we have seen in figure 4.1 of chapter 4. Thus we consider T0 = 0.048 in calculation of G(x, t) at NLO and the 
consideration of parameter T0 does not give any abrupt change in our results. 
In figures 8.1, we have plotted our results of t-evolution of gluon distribution function in LO from equation (9) and compared with 
GRV1998 parameterization for R(x) = R, a constant. Here we have plotted our results of gluon distribution function against Q2 for x 
= 10 � 5 and x = 10� 4 and we get the best fit with R = 0.5 and R = 0.8 respectively.  
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Figure 1: t-evolution of gluon distribution functions in LO for R(x) = R, a constant, compared with GRV1998 parameterization 

graphs 
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In figures 2, we have plotted our results of t-evolution of gluon distribution function in LO from equation (9) and compared with 
GRV1998  parameterization at x=10 ��5 for R(x) = axb and ce��dx respectively. Here we have plotted our results against Q2 for 
R(x)= axb  as well as R(x) = ce�dx and we get the best fit with a = 0.9, b = 0.0001 and c = 0.8, d = 0.001. 
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Figure 2: t-evolution of gluon distribution functions in LO for R(x)= axb and ce� dx compared with GRV1998 parameterization 

graphs 

In figure 3 we have plotted our results of gluon distribution function against x for Q2= 100 GeV2 with R(x) = R and compared with 
MRST2004 and best fit has been found for R= 0.4.  
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Figure 3: x-evolution of gluon distribution functions in LO for R(x) = R, compared with MRST2004 parameterization 
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In figures 4 and 5, we have plotted our results of t-evolutions of gluon distribution function in NLO from equation (11) and 
compared with GRV1998 gluon parameterization for R(x) = R and axb. These results are also compared with our LO results 
obtained from equation (9). In figure 4, we have plotted our results of gluon distribution function against Q2 for x = 10� 5 and we get 
the best fit with R = 0.8 in NLO and R = 0.9 in LO.  
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Figure 4: t-evolution of gluon distribution functions in NLO for R(x) = R, compared with GRV1998 parameterization 

In figures 5 our results of gluon distribution function in NLO have been plotted against Q2 for x = 10��4 with R(x) = axb and we get 
the best fit with   a = 0.8 and b = 0.001 in NLO and a = 0.9 and b = 0.0001 in LO. 
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Figure 5: t-evolution of gluon distribution functions in NLO for R(x) = axb, compared with GRV1998 parameterization 

In figure 6, we have plotted our results of x-evolution of gluon distribution function in NLO from equation (12) and compared with 
GRV1998 gluon parameterization for R(x) = axb. These results are also compared with our LO results. We have plotted our results 
for Q2= 40 GeV2 and the best fit has found for a = 0.9 and b = 0.001 in NLO and for a = 0.8 and b = 0.0001 in LO.  
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x-evolution; Q2=40 GeV2
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Figures 6: x-evolution of gluon distribution functions in NLO for R(x)= axb, compared with GRV1998 parameterization 

In figure 7, we have plotted our results of x-evolution of gluon distribution function in NLO from equation (12) and compared with 
GRV1998 gluon parameterization for R(x) = ce� dx. These results are also compared with our LO results. We have plotted our 
results for Q2= 80 GeV2 and the best fit has found with c = 0.8 and d = 0.001 in both NLO and LO.   
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Figures 7: x-evolution of gluon distribution functions in NLO for R(x)= ce - dx, compared with GRV1998 parameterization 
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In figure 8 we have plotted our results of gluon distribution function against x for Q2=100 GeV2 with R(x) = R, a constant and R(x) 
= axb, a power function of x. Our results are compared with MRST2004 as well as our LO results. The best fit has been found with 
R= 0.4 in both NLO and LO and also with a = 0.5, b = 0.0001 in NLO and a = 0.5, b = 0.001 in LO respectively. 
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Figure 8: x-evolution of gluon distribution functions in NLO for R(x) = R, a constant and axb, compared with MRST2004 

parameterization 

III. CONCLUSION 
In this chapter, we have solved the DGLAP evolution equation by using method of characteristics and get gluon distribution 
function in LO and NLO. We have calculated here the t and x-evolutions of gluon distribution functions. It is shown that our results 
are in good agreement with GRV1998 and MRST2004 global parameterizations especially at small-x and high-Q2 region. Here from 
global parameterizations and our results we have seen that the gluon distribution functions increase when x decreases and Q2 
increases for fixed values of Q2 and x respectively. On an average, the mean percentage errors of our LO and NLO results are 7.73% 
and 1.86% with GRV1998 and also 11.45% and 3.63% with MRST2004 global parameterizations respectively. These errors of our 
results are very less as compared to systematic and statistical uncertainties in the experimental data. Thus, there is significant 
contribution of Next–to–Leading order over the Leading order in unpolarized gluon distribution functions.  
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