

8 IV April 2020

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue IV Apr 2020- Available at www.ijraset.com

867 ©IJRASET: All Rights are Reserved

Automatic Detection and Correction of Software
Faults: A Review Paper

Prof. K. B. Vayadande1, Dr. Nikhil D. Karande2

1Assistant Professor, Department of Information Technology, Vishwakarma Institute of Technology, Pune, Maharashtra, India
2Associate Professor, G.H. Raisoni Institute of Engineering and Technology, Pune, Maharashtra, India

Abstract: Faults in software document can really affect the entire behavior of the software. Many types of faults exist in the
software code document after its development. Software becomes less reliable if these faults are not removed from it. A proper
understanding of the different types of software faults and a classification of these faults are required before applying any
techniques related to their detection or correction. Manual inspection of the code document is also possible but disadvantage of
this technique is, it requires too much time and manpower. So employing large teams for inspection of code is very costly. So,
Automatic detection and correction of these software faults, which suffer from lack of automated tools, are vital to ease the
maintenance of software. Most of the techniques available today only focuses on the detection of fault, so in order to remove
these faults in significant and reliable way is a challenging task. So many techniques are available for detection and corrections.
This paper discusses these techniques.
Keywords: Fault, Inspection, Software Document, Reliable

I. INTRODUCTION
The process of implementing software without any kind of fault is challenging. Currently, the different compilers/interpreters for
software languages have been progressively improved. The presence of the different types faults in software can increase the
number of software failures and can thus decrease the reliability of software. Of course, the software reliability is enhanced if the
risks of software failure are avoided.
Achieving reliable software is a goal of developers. In order to prevent such faults developers and software inspectors must verify
software for all possible faults during the development stages, and also validate the software product before delivering it. Therefore,
it challenges researchers to develop methods or techniques to detect or prevent the faults during development period in order to
obtain a high level of reliability for software product.
Currently many software detection techniques have been proposed and implemented. One of these techniques is code inspection,
first introduced by Fagan [6]. This technique can detect the software coding errors at early stage in lifecycle. Although code
inspection effect is that software quality can be improved, all the existing techniques for maintaining software reliability are reliant
on the ‘‘checklist’’ approach to verify the software instructions and data sets. If the software size is small and not so complicated,
the checklist process can be performed manually, otherwise it can become too unwieldy. In this paper, we have discussed several
techniques for fault detection and fault correction.

II. LITERATURE REVIEW
1) Automatic detection and correction of programming faults for software applications by Prattana Deeprasertkul, Pattarasinee

Bhattarakosol and Fergus O_Brien [1]: In this paper Precompiled Fault Detection (PFD) technique is proposed to detect and
correct faults before a source code is compiled. The objective of the PFD technique is to increase software reliability without
increasing the programmers_ responsibilities. The concepts of ‘‘pre-compilation’’ and ‘‘pattern matching’’ are applied to PFD
in order to reduce the risk of significant damage during execution period. This technique can completely eliminate the
significant faults in software and thus, improves software reliability.

2) Analysis of Software Release Problems Based on Fault Detection and Correction Processes by Haiyan Sun, Jia He, Bingfeng
Xie and Ji Wu[2]: In this paper, the modeling of fault-correction process from the viewpoint of correction time is first
discussed. By proposing a new cost model, further analysis on the optimal release time determination is presented, which is also
based on the model incorporating both fault detection and correction processes. The experiment results show it is more suitable
to the reality. Finally, we propose a new solution to the assignment of testing resource. The approach is also illustrated with an
actual data set from a software development project.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue IV Apr 2020- Available at www.ijraset.com

868 ©IJRASET: All Rights are Reserved

3) Tracking Down Software Bugs Using Automatic Anomaly Detection by Sudheendra Hangal and Monica S. Lam[3]: In this
paper they have introduced DIDUCE, a practical and effective tool that aids programmers in detecting complex program errors
and identifying their root causes. By instrumenting a program and observing its behavior as it runs, DIDUCE dynamically
formulates hypotheses of invariants obeyed by the program. DIDUCE hypothesizes the strictest invariants at the beginning, and
gradually relaxes the hypothesis asviolations are detected to allow for new behavior. The violations reported help users to catch
software bugs as soon as they occur. They also give programmers new visibility into the behavior of the programs such as
identifying rare corner cases in the program logic or even locating hidden errors that corrupt the program’s results.

4) AFID: An Automated Approach to Collecting Software Faults by Alex Edwards, Sean Tucker and Brian Demsky [4]: In this
paper they present a new approach for creating repositories of real software faults. We have developed a tool, the Automatic
Fault Identification Tool (AFID), that implements this approach. AFID records both a fault revealing test case and a faulty
version of the source code for any crashing faults that the developer discovers and a fault correcting source code change for any
crashing faults that the developer corrects. The test cases are a significant contribution, because they enable new research that
explores the dynamic behaviors of the software faults. AFID uses an operating system level monitoring mechanism to monitor
both the compilation and execution of the application. This technique makes it straightforward for AFID to support a wide
range of programming languages and compilers.

5) Automated Debugging and Bug Fixing Solutions: A Systematic Literature Review and Classification by Hafiz Adnan Shafiq
and Zaki Arshad [5]: The scope of work is to identify all those solutions that correct software automatically or semi-
automatically. Solutions for automatic correction of software do not need human intervention while semi-automatic solutions
facilitate a developer in fixing a bug. We aim to gather all such solutions to fix bugs in design, i.e., code, UML design,
algorithms and software architecture. Automated detection, isolation and localization of bug are not in our scope. Moreover, we
are only concerned with software bugs and excluding hardware and networking domains.

III. TECHNIQUES USED
Automatic detection and correction of programming faults for software applications by Prattana Deeprasertkul, Pattarasinee
Bhattarakosol and Fergus O_Brien [1] – “PFD technique performs the fault detection as a software guard. The PFD preprocesses the
programs before the compilation takes place as shown in Fig.1[1] According to the functionality defined for PFD, it consists of two
main modules: detection module, and correction module. In this paper [1] author formally introduce the definitions of a set of PFD
faults, a fault detection function, and a fault correction function.”[1]

Figure 1[1]

Analysis of Software Release Problems Based on Fault Detection and Correction Processes [2] “In this paper they have proposed
two main modules

A. Fault Detection Models
A fault detection process is assumed to follow a non homogeneous Poisson process (NHPP). Fault correction uses

………………….[2]

B. Fault Correction models Based on the Correction Time
Fault correction uses

………………..…….[2]
 Where - fd is Fault Detection
 Md is Mean Value Function for Detection
 Mc is Mean Value Function for Correction”[2]

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue IV Apr 2020- Available at www.ijraset.com

869 ©IJRASET: All Rights are Reserved

1) AFID: An Automated Approach to Collecting Software Faults[4]: “AFID automatically records software faults by monitoring
the compilation and execution steps of the software development process. The underlying design principle for AFID is to record
as much software fault data as possible while imposing minimal runtime overheads and requiring minimal assistance from the
developer. The final goal of the AFID project is to collect fault data from a wide range of software developers working on real
projects. Therefore, requiring the developer to actively participate in recording faults would potentially make finding
developers to use AFID much more difficult. According to this principle, AFID has been designed to only record faults that
actually cause crashes. AFID does not recognize more subtle correctness faults because that would burden the developer with
describing the desired behavior of an application. We expect that we can learn much interesting information from crashing
faults alone.”[4]

Figure. 2[4]

2) Experience with Fagan’s Inspection Method[6]: “Fagan was a professional quality-control engineer who derived his basic ideas

on statistical quality control from two of the gurus of quality management, Deming and Juran. The inspection process is akin to
walkthroughs, although it differs significantly in some aspects. It can very briefly be described as follows. An inspection is
organized by a moderator, who may be appointed by the software quality-assurance group. The moderator receives a copy of
the document to be inspected and checks that it satisfies a number of predetermined criteria (entry criteria). He or she then puts
together an inspection panel of no more than five people (including the author of the document to be inspected). The inspectors
are then invited to attend a short (20–30 minutes) ‘kick-off’ meeting. At this meeting the objective of the inspection is defined,
the subject matter briefly explained and any other relevant details are discussed. The inspection material is distributed and roles
may be assigned to some or all members of the panel, with requests to pay specific attention to some aspect of the documents to
be inspected.”[6]

IV. CONCLUSION
Fault in software can affect the working of software. In some cases software might crash and in some cases it could give you wrong
results. So removing faults from software becomes a vital task. In this paper survey on different techniques of fault detection and
correction have been performed. Every technique works differently. These techniques have their own efficiency factor.

REFERENCES
[1] Automatic detection and correction of programming faults for software applications, Prattana Deeprasertkul, Pattarasinee Bhattarakosol and Fergus O_Brien,

The Journal of Systems and Software 78 (2005) 101–110.
[2] Analysis of Software Release Problems Based on Fault Detection and Correction Processes by Haiyan Sun, Jia He, Bingfeng Xie and Ji Wu, International

Conference on Computer, Communications and Information Technology (CCIT 2014).
[3] Tracking Down Software Bugs Using Automatic Anomaly Detection by Sudheendra Hangal and Monica S. Lam.
[4] AFID: An Automated Approach to Collecting Software Faults by Alex Edwards, Sean Tucker and Brian Demsky, Automated Software Engineering Journal

manuscript
[5] Automated Debugging and Bug Fixing Solutions: A Systematic Literature Review and Classification by Hafiz Adnan Shafiq and Zaki Arshad, Faculty of

Computing Blekinge Institute of Technology SE-371 79 Karlskrona Sweden, Thesis no: MSSE-2014-06
[6] Experience with Fagan’s Inspection Method,E. P. DOOLAN Shell Research B. V., P. O. Box 60, 2280AB Rijswijk (Z-H), The Netherlands

