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Abstract: Focal loss is a novel metric introduced in the recent past to resolve class imbalance problem. This loss was found to 
have a wider impact in various factions of object identification research, and has been centred around improved object detection 
techniques. The applications of object detection techniques are wide and varied, and the introduction of focal loss as a 
deterministic metric during training has had a revolutionary impact on the research community. This paper surveys the 
introduction and resulting impact of this new metric to various applications. 
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I. INTRODUCTION 
Object detection techniques have shown pivotal outcomes for algorithmic research in the field of artificial intelligence, particularly 
in the case of neural networks. Currently, majority of the newer and more advanced techniques use several cascading layers, 
involving multiple stages, with some performing the task of feature extraction while others focus on the proposals of regions of 
interest. These approaches have been viable and have resulted in good and stabilized, accuracy values. However, the multi-stage 
approach is usually computationally very expensive, and as a result, requires advanced hardware for its effective use and 
deployment.  
In 2017, Facebook’s AI Research team created a new loss metric, known as focal loss [1]. This metric was designed to be used 
during training of neural networks. The approach was aimed at improving the performance of one-stage object detection. Further, 
most prominent object detection algorithms today use multi-stage methods, which are complex neural networks and are also 
computationally expensive. To reduce dependency, the focal loss metric aims at shifting the focus to the hard, misclassified 
examples, and thereby improves the performance of one-stage detectors, without a subsequent significant change in their complexity. 
Thus, this represents a method to achieve a good accuracy without relying on multi-staged networks.  

II. IMPORTANCE OF THE DEVELOPMENT 
Majority of datasets for a variety of applications have some form of class imbalance. This is because it is nearly impossible to 
account for all the special conditions or corner cases that may exist in real-world data. Models that are designed by developers need 
to be robust, and must be able to gracefully tolerate all possible edge cases.  
However, since data for edge cases is difficult to gather, the model may not behave correctly for certain classes. This leads to a 
severe imbalance in the data that is collected to tackle any particular problem statement. For example, if the user aims to classify 
words, there are short words like ‘and’ and ‘the’ that may be very common while other words like ‘uncanny’ are used sparingly. 
This class imbalance problem occurs frequently in the real-world, and makes it difficult to design classifiers that are able to respond 
to a large variety of situations. Additionally, this skew in the data frequently leads to high values of false positives or false negatives.  
To improve the effects of recursive class imbalance, two stage detectors were designed. These focused on the feature maps and were 
able to provide some tolerance. However, these methods are computationally demanding and are highly complex systems. To tackle 
the issue of the class imbalance problem, the focal loss was introduced.  
This metric allows a network to understand the complexity of the current sample and provides a weight to each training sample 
based on its rarity. Thus, simple single stage networks are able to tackle the class imbalance problem by the incorporation of focal 
loss.  
Since its first release in 2017, this metric has impacted a wide variety of applications in various fields. The impact of this metric 
across the fields of its applications has been studied in detail in this research work.  
Section 3 covers the theory of this approach, section 4 deals with various domains of usage of the focal loss technique. Section 5 
covers the analysis of results by using focal loss, Section 6 covers some possible future work, before section 7 covers the conclusion 
of this metric.  
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III. ABOUT FOCAL LOSS 
Various forms of loss are used to measure the performance of a classification model, and to depict how the loss varies over time. 
One prominent example is the cross-entropy loss, which focuses on a reduction between the distances in two probability 
distributions, namely the actual and the predicted distributions. The primary flaw is that the cross entropy loss is dependent on the 
distribution of the input data. If one class has many more examples than the other, there will be an inherent imbalance in the 
probability distribution curves, which in turn has a detrimental effect on the ability of the designed classifier to tolerate rare cases.  
To improve this class imbalance effect, the focal loss was introduced. Modifying the existing standard cross-entropy equation, focal 
loss introduced a factor represented as:  

                     (1) 
By setting a positive gamma value, the focus of the neural network that is being trained shifts from the already well-classified 
examples to the misclassified, well-defined examples.  

To begin with, the parameter  is a notation for the probability of the class labelled with numeric value 1. If the variable y 

represents the ground-truth value and is either 0 or 1, the probability of   is the probability that is estimated by the 

model for the ground truth or actual class of y = 1. In order to attain some notational ease, the variable  was defined as:  

          (2) 
The experiments that had been performed on various samples using the pre-existing cross entropy loss indicated that the results were 
easily skewed by having a large class imbalance. Some forms of balancing could be applied by introducing the balancing factor 
known as , which did manage to cause a differentiation between the positive and negative samples. However, this approach was 
not able to balance the difference between the easy and hard samples.  
The focal loss is calculated as follows:  

 

            (3) 

The modulating factor  is thus added to the original cross entropy formula. When an instance passed to the model is 

misclassified and  is small, the modulating factor is nearly unity and thus does not affect the loss. As  tends to 1, the 
modulating factor tends to 0, and again, the loss is not influenced. Thus, all well-classified examples have lower weightage. This 
down weighting of the various examples can be controlled smoothly by the modulating factor, .  

IV.  APPLICATIONS OF FOCAL LOSS FOR OBJECT DETECTION 
A. Object Detection on Roads 
1) Vehicle Detection: The introduction of focal loss in vehicles began with its application to surveillance of vehicles. [2] It was 

observed that the RetinaNet based focal loss training that was performed on the UA-DETRAC dataset [3] was able to find the 
vehicles appropriately even in various and varied light conditions and across frames. It was thus an encouraging result for 
extension of the RetinaNet for vehicle detection in intelligent transport systems. This focal loss based approach rivalled the 
accuracy of the two-stage Faster RCNN approach, providing a much faster solution with a comparable accuracy metric. The 
inferencing for this particular set of applications is usually done on the multi-object tracking dataset created by the University 
of Albany, known as the DEtection and TRACking (DETRAC) dataset. [4]. 

2) Traffic Light Detection: Another important aspect of vehicles which is strongly influenced by artificial intelligence is the 
advanced driver assistance system (ADAS). To detect smaller traffic lights effectively, this metric of loss was incorporated in 
deep neural networks. [5] The method used in this paper implemented a focal regression loss. The results were a higher mAP 
than state-of-the-art detectors by 7.19 to 42.03% on the Bosch-TL dataset [6] and by 19.86 to 49.16% on the LISA-TL dataset 
[7] The focal regression approach was also extended to general object detection techniques to test its capability of improving 
the class imbalance effects. [8] The introduction of a  was done. This value is dependent on the progress made by the training 
and thus it achieves a better performance. To reduce the overhead computation of the focal loss hyperparameters, automated 
focal loss has been introduced by this research work. This particular method has been applied primarily to the task of detecting 
vehicles in three-dimensional spaces.  
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B. Object Detection in Images and Videos 
1) Image Captioning: The introduction of a focal cross-entropy loss was found to be beneficial while detecting the various 

attributes of a pedestrian and returning them as part of the caption for a particular input image. [9] By introducing this novel 
fusion attention mechanism which is based on focal loss, generative adversarial networks can be improved. A similar metric 
was introduced for small object detection within a video frame, which is known as the  focal loss. [10] This allows for small 
and dense detections in images, enabling captioning of the information. Automatic image tagging [11] can also be achieved 
using transfer learning in deep networks with the focal loss metric applied. The introduction of focal loss in vehicles began with 
its application to surveillance of vehicles. [2] It was observed that the RetinaNet based focal loss training that was performed on 
the UA-DETRAC dataset [3] was able to find the vehicles appropriately even in various and varied light conditions and across 
frames. It was thus an encouraging result for extension of the RetinaNet for vehicle detection in intelligent transport systems. 
This focal loss based approach rivalled the accuracy of the two-stage Faster RCNN approach, providing a much faster solution 
with a comparable accuracy metric. The inferencing for this particular set of applications is usually done on the multi-object 
tracking dataset created by the University of Albany, known as the DEtection and TRACking (DETRAC) dataset. [4]. 

2) Image Component Recognition: A combination of the connectionist temporal classification along with focal loss has been used 
to create a more advanced optical character recognition system, particularly for Chinese characters. [12] Thus, being passed an 
input image, this algorithm returns the composing characters. In a similar fashion, the creation of multi-class labels in case of a 
single-label input was found to create a more generalized output and with accuracy metrics that rival those of single-label 
predictors. [13] In a niche avenue like image captioning, which frequently has sparse samples for training, the usage of focal 
loss helps improve the performance of neural networks designed for this task. 

C. Object Detection in Medical Images and Samples 
1) Segmentation and Area Captioning: In the segmentation and captioning of medical images, due to the data imbalance, this 

metric for loss estimation is utilized. [14] Automatic detection of skin lesions is also strongly supported by a combination of 
loss metrics, specifically a combination of the focal loss and the jaccard distance measures. [15] The approach was also 
extended to the detection of ischemic stroke lesion detections [16] and the primary role of the focal loss metric was to prevent 
the increase in the false positives rate. A hybrid approach with hybrid focal loss measurements has been employed for this 
particular detection.  Apart from these specific classification techniques, object instance segmentation and region of interest 
detection is done via the focal loss metric by implementing a variation of the Mask RCNN algorithm. This method has been 
implemented to perform the segmentation of lung nodules. [17]  

2) Classification of Medical Samples: An improvement on existing methods of testing whether a breast cancer sample is benign or 
malignant was achieved when a multi-scale ResNet structure was utilized along with the focal loss metric for training of 
samples. [18].  Similar classifications of lung nodules have been performed by using convolutional neural networks with focal 
loss. [19] After the preliminary separation into nodule and non-nodule, the categorization of the lung nodules incorporates a 
specifically designed neural network with focal loss as the convergence metric.  In order to overcome the few numbers of 
abnormal red blood cell samples and to automate the classification of their morphologies, focal loss based convolutional neural 
networks were used. [20] This is a high impact application, since it requires pathologists to be experts in the domain and 
misdiagnosis leads to improper treatment. This pressure is alleviated by the use of neural networks for the classification task. 
Thus, the focal loss metric has had a significant impact on the development and improvement of applications in the biomedical 
domain. This is expected since most samples in this particular domain are generally primarily constricted by the skew present in 
the input data, that is, an imbalance in the available samples for each class.  

D. Object Detection for People and Face Detection  
1) Detection of People: Focal loss metrics have been used in person re-identification from video surveillance streams. [21] This 

approach utilized spatial attention and temporal regularization while performing the re-identification of a particular subject in 
question. Using focal and L1 loss for classification and bounding box regression respectively, the person detection subnet is 
improved during the construction of the MultiPoseNet, a keypoint-based, multiple person segmentation algorithm. [22] This 
form of loss has been extended to pedestrian detection mechanisms by using asymptotic localization filtering to incrementally 
improve the bounding boxes of each of the proposed anchors. [23] 
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2) Face Detection and Recognition: The approach has been extended to the face recognition system, including a DenseNet based 
face detection framework [24]. By usage of this metric, attention networks have been created, which are also able to detect 
partially visible faces. [25] This is particularly useful to break down images of crowded environments. The alignment of the 
face recognition was accomplished by focal loss based multi task convolutional neural networks. [26] The success of this 
endeavor has been so promising that the focal loss metric is also used in creating real-time face detectors that are ported and 
operational on embedded systems. [27]  

E. Other Applications 
Some other interesting applications of the focal loss method have been in an adaboost and convolutional neural network based 
drogue detection during autonomous refueling. [28] The resulting algorithm showed improved performance in terms of the accuracy 
as well as timing metrics.  Neural graph filtering can be applied to fashion recommendation systems, and the focal loss based metric 
resulted in an improvement by nearly 10% in comparison with the earlier methods. The design also had a high customer preference 
rating. [29] With an increasing importance on biometrics, the introduction of focal loss to establish a one-stage effort for fingerprint 
singular point detection is bound to have an impact on security efficiency in various applications everywhere. [30] The false alarm 
rate and detection speed are also influenced positively.  The focal loss technique has also been applied to agriculture-based 
applications, where it has been used to detect diseases within the Casava plant. [31] The paper managed to achieve an accuracy of 
93% in their detection of the various diseases, and thus had an impactful outcome in solving a large-scale problem.  
During autonomous driving or in data collection about roads in an area, detection of whether they are paved or unpaved is critical to 
providing suggestions to the driver. This particular form of detection can be improved significantly by the introduction of the focal 
loss metric during the training of the associated algorithm. [32] By grouping and detecting corners, object detection can be 
performed. [33] In order to improve this process, a variant of focal loss was proposed. This variation of the metric is designed to 
reduce the penalty that is given to negative locations that are found within some specific distance from a positive location.  To 
perform semantic segmentation, the designed network should be able to differentiate among the unique composite features. While 
learning these features, one particular method of providing guidance is to predict the boundary of the semantic region. [34] This 
method is guided by the changes that take place in the focal loss, which acts as a supervisor for the output of this section of the 
network.  From a raw point cloud, an entire three-dimensional object can be detected from a point-based region convolutional neural 
network. [35] Here, the number of points that are found in the foreground place usually exceeds the number of points that form the 
background. To improve the imbalance that occurs because of this skew in point density, the focal loss metric has been utilized.  
Thus, due to its inherent class imbalance tolerance, the focal loss has a number of varied applications.   

V. ANALYSIS AND COMPARISON OF RESULTS ACROSS APPLICATIONS 
A. Evaluation Metrics 
1) Mean Average Precision: The primary parameter that is used for comparison of the improvement provided by the focal loss 

technique is known as the mean average precision. (mAP) The value of precision for a particular class is the ratio of true 
positives to total samples. The average precision is then calculated for all the classes and the average of these values is taken as 
the final mAP value. The equation used for this calculation is:  

                (4) 
Where, Q is the number of queries in a given set and AveP(q) is the average precision value calculated for a particular user entry q. 
The mAP metric was developed particularly for usage in object detection techniques. This metric can also be evaluated as the area 
under the precision recall curve. A basis for estimating mAP across various scales is dependent on the intersection over union (IoU) 
metric. The results in the form of boundary boxes are selected according to different IoU thresholds in order to calculate the mAP. 
The IoU metric is defined as the ratio between the area of overlap and the area of union. It is a measure of how well the boundary 
box matches that of the ground truth.  The mAP metric is usually represented in the form of a percentage, which is followed in the 
subsequence sections and discussions. In the segmentation and captioning of medical images, due to the data imbalance, this metric 
for loss estimation is utilized [14]. Automatic detection of skin lesions is also strongly supported by a combination of loss metrics, 
specifically a combination of the focal loss and the jaccard distance measures [15]. The approach was also extended to the detection 
of ischemic stroke lesion detections [16] and the primary role of the focal loss metric was to prevent the increase in the false 
positives rate. A hybrid approach with hybrid focal loss measurements has been employed for this particular detection.  
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Apart from these specific classification techniques, object instance segmentation and region of interest detection is done via the 
focal loss metric by implementing a variation of the Mask RCNN algorithm. This method has been implemented to perform the 
segmentation of lung nodules [17].  
2) Accuracy Metric: The most common metric for basic classification is the accuracy metric. This is calculated by estimating the 

number of correct samples, divided by the total number of samples that are collected. In some cases, soft accuracy is utilized. 
This method allows some tolerance parameters to be introduced to the system, such as allowing an error of a step of 1. Here, a 
step is the number of edits needed for the prediction to match the ground truth [12]. 

3) Miss Rate over False Positive Per Image on log scale: This particular scale was proposed by Caltech and is a standard form of 
evaluation, [36] particularly designed for pedestrian detection. This method is referred to as MR in subsequent sections.  Miss 
rate is defined as the number of false negatives out of the total of true positives and false negatives. This value is plotted against 
the number of false positives per image (FPPI) by varying the threshold of confidence of detection. It is used in pedestrian 
detection since there is usually found to be an upper limit to the acceptable FPPI which is independent of the person density in 
the input image. To find the log-average Miss Rate over FPPI, both the values are plotted on a log scale, with values ranging 
from 10-2 to 100 at nine equally spaced out FPPI rates. The value is then averaged across all the samples collected to get the 
final metric. This metric is an indication of the objects that are not detected.  

B. Object Detection on Roads 
The comparison of the various object detection techniques done on the road are done on the basis of their mAP metric as captured in 
Table 1.  

TABLE I 
mAP values for various object detection on roads 

Application Model Used Dataset mAP 

Vehicle surveillance RetinaNet  DETRAC 73.79 

Vehicle detection for 
intelligent transport 

RetinaNet  DETRAC 61.2 

Traffic light detection 
for ADAS 

Deconvolutional Deep 
Neural Network 

BOSCH-TL 42.03 

Traffic light detection 
for ADAS 

Deconvolutional Deep 
Neural Network 

LISA-TL 49.16 

Automated Focal Loss 
for General Object 
Detection 

RetinaNet with IoU 
metric set to 0.5 

COCO  [37] 
benchmark 
dataset 

51.18 

These values indicate an improvement over the existing state-of-the-art single stage methods, and show that this approach can be 
used to work with imbalanced classes. 

C. Object Detection in Images and Videos 
The proposed IA2 net [9] shows an improvement in the mAP metric when focal loss is introduced. When inferencing is done on the 
Richly Annotated Pedestrian dataset, [38] the mAP has a value of 77.44. For small and dense commodity detection, the designed 
CommodityNet shows an mAP metric of 80.7 when modelled with the ResNet 50 approach.  
The inferencing of the focal loss based optical character recognition showed an accuracy of 76.4% on the general Chinese character 
dataset. [39] The soft accuracy which allowed for a shift by one character, had a value of 94.6% in this particular experiment.  

D. Object Detection in Medical Images and Samples 
The results of the classification methods that are applied to the medical samples are captured along with the designed architecture, 
as shown in table 2. 
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TABLE III 
Accuracy Values for Object Detection in Medical Images 

Classification Type Model Used Dataset Accuracy 
Lesion Classification Semi-supervised learning with 

adversarial training in a 
convolutional neural network 
based on Xception modules 

IDRID [40] 91.34 

Breast Cancer Classification ResNet-50 BreaKHis [41]  94.92 at 40X 
magnification 

Lung Node Classification Proposed convolutional network LIDC/IDRI 
[42] 

97.20 

Canine Red Blood Cell 
Morphology Classification 

DenseNet-121 Custom dataset 95.60 

E. Object Detection for People and Face Detection 
For detection of people using keypoints or other mechanisms, various metrics are used. By using accuracy metrics on the PRID 
2011 [43] dataset for person reidentification, the network using spatial attention and temporal pooling methods achieved an overall 
accuracy of 92.1%. On performing the person detection on the COCO dataset and applying an IoU threshold of 0.5, the mAP result 
was 81.5%.  
The MR metric applied for single stage pedestrian detection was at a level of 12 for the Reasonable subset of the CityPersons 
dataset. [44] It attained an encouraging value of 51.9 on the Heavy subset, 11.4 on the Partial subset and 8.4 on the Bare subset, thus 
showing a robust response to various person density inputs that are available in the dataset.  
While performing face detection, the input categories are segregated into easy, medium, and hard subsets. The results of the face 
detection applications of focal loss are captured in Table 3.  

TABLE IIIII 
Average Precision (AP) Values for People and Face Detection 

Application Network Dataset AP 
(Easy) 

AP 
(Medium) 

AP 
(Hard) 

Face Detection Dual Shot Face Detector with focal 
loss 

Wider Face 
[45] 

96.9 96.2 92.5 

Face Detection of Occluded 
Faces 

Uses a face attention network Wider Face 94.6  93.6 88.5 

VI. FUTURE PROSPECTS 
The application of deep learning and other neural network-based systems to nearly all fields of life is an essential part of the current 
developments in the technological world. While working with real-world data, a skew in the input data sample is inevitable. Focal 
loss represents a viable and scalable solution for dealing with complex problem statements.  
Thus, the applications of single shot detectors can be extended to all forms of object detection. Currently, the research focuses on 
detection of people, objects on the road, or medical information. With an increase in the robust capabilities of these single shot 
detection systems, the design of viable systems will be sped up and enhanced considerably. The extension of object detection 
systems in three-dimensional, as well as the detection of minute objects that denote various attributes in images or in video frames 
can also be explored. This focal loss technique will be crucial in further development of artificial intelligence systems for medical 
systems, as these usually face data constraints.  

VII. CONCLUSIONS 
The focal loss is a new and powerful metric that can allow for an alleviation in the common problem of class imbalance. This metric 
has been implemented successfully across a variety of fields, and has had an important impact in the improvement of object 
detection techniques that focus on using only single stage classifiers. The impact of this approach in the deep learning framework is 
expected to grow exponentially in the near future.  
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