

2 III March 2014

www.ijraset.com Vol. 2 Issue III, March 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 111

Efficient Utilization of Nodes in a Gaming
Environment by Greedy Strategies in Cloud

Computing
Rajesh George Rajan1, V.Jeyakrishnan2

M.Tech. Student, Dept of Computer Science, Karunya University, Coimbatore, India1

Assistant Professor, Dept of Computer Science, Karunya University, Coimbatore, India2

Abstract- Cloud computing can be offers dynamic and a better resources are to be given to the users according to their
demand basis. In the existing environments of cloud computing the load distribution between the different virtual machines
and virtual servers are becoming a challenging task. By using the gaming environments, the efficient utilization of nodes are
to be done. In this paper the experimental result shows the efficient load distribution between the nodes and the better
utilization of the nodes in the environments.

Keywords- Load Distribution, Greedy Heuristics, Greedy Heuristic with State, Positional Action Manager, Cloud
Computing.

1. INTRODUCTION

Cloud computing is on demand service by which can be
provide various types of services to our societies. There were
various types of services that should be provided by the cloud
computing they are platform as a service, infrastructure as a
service and software as a service. Cloud computing was
intended to enable computing across widespread diverse
resources rather than on local machines or at remote service
farms. Although there is no proper definition for cloud
computing. Load balancing was identified as a major concern
to allow cloud computing to scale up to increasing demand.
Load balancing is the process of reassigning the total loads to
the individual nodes of the collective system to make the best
response time and also good utilization of the resources

Load distribution is the important method that can be helps for
the better distribution of the load throughout the system.
According to the load distribution, when various requests are
coming from different clients, then if the server cannot
withstand with the request, it will cause the problem so that
the load becomes distributed over the cluster. In the
distributed virtual environments, the massively multiplayer
games are to be used for the distributed simulations. Mostly
the distributed virtual environments rely on a centralized
architecture that supports various users’ functionalities .like

synchronization, users login etc. When the users level is
increasing simultaneously there were show some scalability
limitation. As a result cluster based centralized architecture
becomes maintained.

Load balancing was identified as a major concern to allow
cloud computing to scale up to increasing demands. A
distributed solution is required, as it is not practical or cost
efficient in many cases to maintain idle service/hardware
provision merely to keep up with all identified demands.
Equally, when dealing with such complexity, it is impossible
to fully detail all system future states. Therefore, it is
necessary to allow local reasoning through distributed
algorithms on the current system state.

Cloud Computing [1] allows us to solve the aforementioned
scalability and hardware ownership problems because of on
demand resource provisioning [2, 3]. The possibility of
renting machines lifts the DVE operators from the burden of
buying and maintaining hardware, whereas it offers the
illusion of infinite machines, with good effects on scalability.
Also, the pay-per-use model adheres to the seasonal access
pattern of the DVE (e.g. more users in weekends than in the
middle of the week). However, Cloud Computing may still be

www.ijraset.com Vol. 2 Issue III, March 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 112

costly for platform operators. Besides server time, bandwidth
cost represents a major expense when operating a DVE [4].
When this cloud approaches are to be very feasible but its cost
must be too higher for the distributed virtual environments. So
that another concept of infrastructure for the distributed virtual
environments is considered that is peer-to-peer concept. So
various advantages are to be there for the peer system that is
the network is able to self repair, robustness and also the
major thing is the low cost that can be affordable to the
organization. So these are the two orthogonal approaches that
are to be combined.

According to the integration of the two different environments
then the execution of the corresponding system becoming a
challenging one. In the distributed virtual environments the
advantages of these two methods are to be combined. In this
paper the distributed virtual environment hybrid architecture,
distribution concept of No Distribution, Greedy Heuristic and
Greedy Heuristic with state are to be analyzed. And the rest
was the results and conclusion.

2. HYBRID ARCHITECTURE

Hybrid architectures are used to exploit and combine the
various user resources i.e. the peer and the servers that is the
cloud. According to this section the overall structure of the
distributed virtual environment are to be discussed. In the
gaming environments there were various players and each
players having their own states and their own position in order
to maintain the proper functioning of the game. The players
are to be connected to the server by means of the game client
and the client show the representation of the corresponding
game. When each position is to be updated by the client then
the positional action manager can be updated. Similarly the
state action manager can also update the position of the state.

Fig.1 Overall Architecture

Fig. 1 presents the main components of our architecture. The
two core distributed components are the Positional Action
Manager (PAM) and the State Action Manager (SAM). PAM
manages only the positions of the entities and organizes the
VE according to principles of area partitioning, so that AOI
resolution is simplified. Instead, SAM is organized according
to a random object-to-sector assignment, and this allows us to
handle the state of the entities without any transfer of the
entities across servers due to positional action [5]. Such a
transfer may anyway occur, but instead of being triggered by
positional actions, it is performed to optimize the distribution
of the entities among the nodes. In the positional action
manager when a gaming environment starts in a network so
that each player in the game can maintain the position and
also when the player moves from one position to another
position then the updating of the position done in the
positional action manager. But when considering the state
action manager when a player will be died or making any
changes in that environment, then that changes of their state
can be updated on the state action manager. In this node pool
there were the combination of the cloud and peer nodes.

In the distribution concepts the major benefit when compared
to the other system configuration is scalability. So the
heuristic-based algorithms are to be used for the load
distribution. In the initial stage No Distribution policy can be
considered. According to the No Distribution policy there was
no transfer of load between the nodes. So if too many requests
are to be come on to that corresponding server then the fault
tolerance can be occurred. This can be avoided by another
algorithm as greedy approaches. Moreover in the real time the
usage of the cloud node so that if any fault will occur, then a
cloud node can be act as a backup virtual server.

I. Greedy Heuristic: One of the best optimization algorithms
was this. Here also the searching operation was done to select
the node that can perform the load distribution. The pseudo
code of the greedy approach is shown below

1. Initially set the node pool becomes null
2. For each updating of cloud and peer nodes in to the

pool calculate the score of the nodes
3. According to the basis of the score, nodes are

arranged in descending order
4. Selection of the best node from the pool by

comparing the load of the node
5. Load distribute through the best node
6. Update the load of the best node
7. Repeat the step 4 to 6

www.ijraset.com

I N T E R N A T I O N A L J O U R N
AN D E N G I N E E

According to the logic of this greedy strategy these operations
are to be performed. The selection of the best node is the one
of the important part of the searching algorithms. In this
best node is select from the node pool containing different
node values.

II Greedy Heuristic with State: This is similar to that of
greedy heuristic. But the difference is the introduction of the
state. That is there were a time was to be set for t
and performance of a node. The algorithm is same as that of
the greedy heuristics. The importance is that the continuous
usage of the single node was cannot be allowed here. The
pseudo code of this approach is as follows

1. Initially set the node pool becomes null
2. For each updating of cloud and peer nodes in to the

pool calculate the score of the nodes
3. According to the basis of the score, nodes are

arranged in descending order
4. Selection of the best node from the pool by

comparing the load of the node
5. Load distribute through the best node
6. Update the load of the best node
7. Set a minimum interval of time for the selection

node in order to avoid continuous selection
8. Repeat the step 4 to 6

3. RESULTS

When considering the results of these two approaches
greedy heuristic with state is better than that of the other.
According to the greedy heuristic the pool having the nodes
and the selection of the node was on the basis of the load. At
each time when a node will select that nodes weight becomes
reduced and utilization of that node becomes increased. In this
approach the selection of a node becomes repeatedly, so that
the participation of the other nodes in the pool becomes in
very delay.

In the experiment we use minimum number of nodes. But
when considering very large number of nodes with more
amount of resources, then there were a possibility of node that
was not participated in the load distribution. From this logic of
greedy approaches the experiment was established.

Vol. 2 Issue III,

ISSN: 2

N A L F O R R E S E A R C H I N A P P L I E
E R I N G T E C H N O L O G Y (I J R A S E T

According to the logic of this greedy strategy these operations
are to be performed. The selection of the best node is the one
of the important part of the searching algorithms. In this the
best node is select from the node pool containing different

: This is similar to that of
greedy heuristic. But the difference is the introduction of the
state. That is there were a time was to be set for the selection
and performance of a node. The algorithm is same as that of
the greedy heuristics. The importance is that the continuous
usage of the single node was cannot be allowed here. The

pool becomes null
For each updating of cloud and peer nodes in to the

According to the basis of the score, nodes are

Selection of the best node from the pool by

Load distribute through the best node

Set a minimum interval of time for the selection
node in order to avoid continuous selection

When considering the results of these two approaches the
greedy heuristic with state is better than that of the other.
According to the greedy heuristic the pool having the nodes
and the selection of the node was on the basis of the load. At
each time when a node will select that nodes weight becomes

and utilization of that node becomes increased. In this
approach the selection of a node becomes repeatedly, so that
the participation of the other nodes in the pool becomes in

In the experiment we use minimum number of nodes. But
ring very large number of nodes with more

amount of resources, then there were a possibility of node that
was not participated in the load distribution. From this logic of
greedy approaches the experiment was established.

Fig.2 Utilization of nodes using greedy heuristic

In this fig.2 graph we see that the peer0 node should only
participated the continuous three times in the distribution. So
the other nodes are not takes part in the operation. So the
selection can be continuous towards on a particular no
some nodes. But when considering the other greedy
approaches like greedy heuristic with state the problem
becomes solved.

Fig.3 Utilization of nodes using greedy heuristic with state

In this fig.3 shows the approach of greedy heuristic with state,
so that the utilization of the nodes becomes increased. Here
the continuous utilization of a single node can be avoided. So
each node in the node pool was getting a chance to participate
in the load distribution. This is the peculiarity of the greedy
heuristic with state.

ssue III, March 2014

2321-9653

E D S C I E N C E
T)

g greedy heuristic

In this fig.2 graph we see that the peer0 node should only
participated the continuous three times in the distribution. So
the other nodes are not takes part in the operation. So the
selection can be continuous towards on a particular node or
some nodes. But when considering the other greedy
approaches like greedy heuristic with state the problem

Fig.3 Utilization of nodes using greedy heuristic with state

In this fig.3 shows the approach of greedy heuristic with state,
so that the utilization of the nodes becomes increased. Here
the continuous utilization of a single node can be avoided. So
each node in the node pool was getting a chance to participate
in the load distribution. This is the peculiarity of the greedy

www.ijraset.com Vol. 2 Issue III, March 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 114

4. CONCLUSION

In this paper we consider the greedy strategies like greedy
heuristic and greedy heuristic with state. When considering
the gaming environment the effective utilization of the nodes
are become the one of the challenge. This can be reduced by
the help of these greedy strategies. In this paper the greedy
heuristic with state is the better algorithm for the effective
utilization of nodes in the gaming environments.

REFERENCES

[1] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, I. Brandic,
Cloud computing and emerging IT platforms: vision,
hype, and reality for delivering computing as the 5th
utility, Future Generation Computer Systems 25 (6)
(2009) 599–616.

[2] V. Nae, A. Iosup, S. Podlipnig, R. Prodan, D. Epema, T.
Fahringer, Efficient management of data center resources
for Massively Multiplayer Online Games, 2008 SC—
International Conference for High Performance
Computing, Networking, Storage and Analysis, 2008, pp.
1–12.

[3] V. Nae, R. Prodan, A. Iosup, T. Fahringer, A new
business model for massively multiplayer online games,
in: Proceeding of the Second Joint WOSP/SIPEW
International Conference on Performance Engineering,
ACM, 2011, pp. 271–282.

[4] K. Chen, P. Huang, C. Lei, Game traffic analysis: an
MMORPG perspective,Computer Networks 50 (16)
(2006) 3002–3023.

[5] Emanuele Carlini, Laura Ricci, Massimo Coppola,
Flexible load distribution for hybrid distributed virtual
environments: Future Generation Computer Systems 29
(2013) 1561–1572.

