

3 IX September 2015

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
1

A VBA Based Computer Program for Nonlinear
FEA of Large Displacement 2D Beam Structures

Sreekanth M. Sivaraman
Technip Geoproduction Sdn Bhd, Malaysia

Abstract— This article proposes a methodology for implementing a VBA based nonlinear FEA program in Microsoft Excel, for
analyzing large displacement 2D beam structures. The program uses 2 noded - 6 degrees of freedom elements, and the
equilibrium equations were formulated in combined Corotational - Total Lagrangian (CR-TL) system. Polynomial operation
capability was built into the program, enabling computerized generation of stiffness and nodal force matrices. This makes the
program easily adaptable to various element formulations. The program was also equipped with the mathematical functionality
required for efficient handling of computations involving nonlinear strain measures. Accuracy and limitations of the program
are demonstrated through NAFEMS benchmark tests.
Keywords— Nonlinear FEA program; Large displacement beam; Corotational system; CR-TL system; Beam element
benchmark test; FEA program development

I. INTRODUCTION
Finite Element Analysis of large displacement beam structures has extensive utility in several branches of engineering, one prime
example being offshore pipeline engineering. Many commercial software packages are available for such analyses and usually these
softwares are tailor made to analyse specific situations that occur commonly during engineering operations. Though there are
advantages to using such softwares, there is a major drawback that the engineers have to work with a limited set of methodologies
and formulations. Often the problem at hand needs to be modified significantly to suit the features of the software package.
Therefore importance of custom developed applications cannot be overstated.
Many efficient frameworks and methodologies for building nonlinear FEA programs have been proposed till date. Some of them are
([1]-[4]). Most of the existing works present succinct overviews of software architecture that is suitable for large scale programs.
There is a lack of literature that focuses on computational aspects of a program. This article aims to present such an approach, by
discussing implementation of a FEA program in Microsoft Excel for analysing geometrically nonlinear 2 dimensional beam
structures. Microsoft Excel was chosen as it is a platform easily available to practicing engineers and students. The chart and
spreadsheet features of Excel provide means of interfacing with the user. Several methodologies for solving geometrically nonlinear
problems have been proposed till date, and most of the methods are based on Total Lagrangian (TL), Updated Lagrangian (UL),
Corotational (CR) formulations or a combination of them ([5]-[10]). While the strong suit of CR formulation is the handling of large
rotations, UL and TL methods help in considering large element deformations. Therefore, a combination of these methods helps to
handle large element strains as well as displacements and rotations. The accuracy in large strain analysis also depends on the
displacement interpolation functions used. Exact interpolations functions for 2D and 3D beam elements have been proposed in the
past ([11]-[13]), but analyses can be done with approximate functions as well. This program uses cubic Hermitian polynomials for
transverse nodal displacements, and linear polynomials for axial displacements. Benchmark tests were done against geometrically
exact formulations, which reveal the limitations and capabilities of the program. Section VI presents the results of the benchmark
tests. A brief summary of the program is given in Fig. 1.

II. BASIC FUNCTIONALITY

A. Polynomial Operations
Since nonlinear strain and stress measures were used, calculation of stiffness and nodal force matrices during analysis involved
integration of several high order polynomials. In order to make the program easily adaptable to various interpolation functions, a
data type was defined to hold polynomials, and functions were defined for conducting mathematical operations using polynomials
and polynomial matrices. Polynomials were defined using 2 dimensional arrays (size - n x m) where ‘(n – 1)’ is the exp ected
number of variables and ‘m’ is the number of terms in the polynomial. Each expected variable is assigned a row number and each
term of the polynomial is assigned a column number. Member (i, j) of the array contains the degree of the (i-1)th variable of the jth

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
2

term of the polynomial. An example is shown in Fig. 2.
Custom functions were defined for addition, multiplication, differentiation, integration and other required polynomial operations.
Three types of polynomials were defined -
Type 1 - with variables x, y, E (Young’s modulus), L (element length), 1/(1 + ν) (ν = Poisson’s ratio) .
Type 2 - with variables cosθ, sinθ, L .
Type 3 - with variables E, L and 1/ (1 + ν)

Fig. 1 Summary of the program

 Polynomial - xy/L + 3y3E/L2
 1 3 - Coefficient
 1 0 - Degree of x
 1 3 - Degree of y
 0 1 - Degree of E
 -1 -2 - Degree of L

Fig. 2 Array representation of a polynomial

B. Matrix Operations
Since FEA involves several matrix operations, the ‘array’ feature of VBA was extensively used. In addition to the numerical array

Read and process input

 Read model definition – Nodes, elements, section profiles, material properties, load and
boundary conditions, analysis step details and prepare data arrays.

 Mesh the structure, and assign numbers to nodes, elements and all nodal degrees of
freedom.

 Plot the structure

Define general matrices

 Define displacement interpolation functions, material constitutive law and co-ordinate
transformation matrices

 Integrate and prepare element stiffness matrices and nodal force matrices in generalized
format.

Analyse the structure for each step

 Identify loads and boundary conditions initiated in the current step and ones
that are propagated from the previous step

 Attempt to find equilibrium configuration at the end of the step.

Plot and print results

 Print output data
 Plot the required configurations

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
3

operation functions inbuilt in VBA, several other matrix operations involving block matrices were required during the program
execution. Custom functions were defined for these. Details of some of these functions, along with their names (which will be
referred to later in this article), are given in Table I.

C. User Interface And Input Data Handling
Since User interface of the program was based on spreadsheet cells and charts. Input data entered in designated cells was read and
stored in specific arrays (Refer Table II). The required input data consisted of details of nodes, elements, section profiles, element
properties, load and boundary conditions, and analysis step details.

1) Loads and Boundary Conditions: The load types considered in the program were joint loads (Forces/moments on user defined
nodes), uniform line forces and uniform body forces. Applicable boundary conditions consist of displacements/rotations at user
defined nodes. Conducting multi-step analysis would require the user to define the analysis steps in which a particular load or
boundary condition is to be applied. In this program, load or boundary condition definition included input for the starting and ending
steps (Refer Table II).

2) Data Arrays For Multi-Step Analysis: In nonlinear structural analyses, it is often advantageous to conduct simulations in
multiple steps, progressively modifying loads or boundary conditions in each step. Based on input data, indexing arrays were
prepared, which contained details of the loads and boundary conditions to be ‘Initialized’ and ‘Propagated’ in each step. ‘Initialized’
conditions were applied at a low magnitude at the start of a step and iteratively increased to their final magnitude by the end of the
step. ‘Propagated’ conditions were applied at their maximum magnitude at the start of the step itself. Details of the load conditions
to be initiated in each step were stored in the array ‘InitLoadTable’, with array structure as shown below

቎
 [0	 BF11 BF12 .]
				[0	 JL11 JL12 .]

[0 LF11	 LF12 .]

 . . .						[0	 BFn1	 BFn2 .]
. . .						[0		 JLn1 JLn2 .]
. . .					[0 	LFn1 		LFn2 .]

	቏

where [0 BFi1 BFi2 .] is an array containing details of the body forces to be initialized in the ith step. BFij refers to the ID (Column
number in ‘BFLdTable’ (Refer Table II)) of the jth load to be applied in that step. Similarly JLij refers to joint loads in array
‘JntLdTable’ and LFij refers to ‘LfLdTable’ (Table II). ‘Propagated’ loads were stored in the array ‘PropLoadTable’. The array
structure was similar to ‘InitLoadTable’. Details of boundary conditions to be initialized in each step were stored in the array
‘InitConstrntsTable’, with array structure as shown below

ൣ[0 Cns11 Cns12 . .] . . . [0 Cnsn1 Cnsn2 . .] ൧
where [0 Cnsi1 Cnsi2 . .] is an array containing details of the boundary displacements to be initialized in the ith step. Cnsij
refers to the ID (Column number in ‘PreDefDisps’ array (Table II)) of the jth condition to be initialized in that step. Similarly,
‘PropConstrntsTable’ was used for propagated constraints.

TABLE I
MATRIX OPERATION FUNCTIONS

Function name and usage Operation

PM(A, [B])

A is polynomial
[B] is polynomial matrix

A ⊗		 ൤B11 B1n
Bn1 Bnn

 ൨ = ൤AB11 AB1n
ABn1 ABnn

 ൨

Each entity of [B] is multiplied with A
(eg: AB11 = A.B11)

MM1([A], [B])

Aij is polynomial
[Bij] is polynomial matrix

൤A11 A1n
An1 Ann

 ൨ 		⊗		൤
[B11] [B1n]
[Bn1] [Bnn]	൨ = ൤

[AB11] [AB1n]
[ABn1] [ABnn] ൨

Conventional matrix multiplication between [A] and [B].
Multiplication between entities are done using ‘PM’ function
(eg:[AB11] = PM(A11, [B11]) + PM(A12, [B21]) …)

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
4

MM2([A], [B])

 [A] and [B] are polynomial
matrices

൤A11 A1n
An1 Ann

 ൨ ⊗ ൤B11 B1n
Bn1 Bnn

 ൨ = ൤
[AB11] [AB1n]
[ABn1] [ABnn] ൨

Each entity of [B] will be multiplied with entire matrix [A] using ‘PM’
function. (eg: [AB11] = PM(B11, [A])

MM3([A], [B])

 [Aij] and [Bij] are
polynomial matrices

൤[A11] [A1n]
[An1] [Ann] ൨ ⊗		 ൤

[B11] [B1n]
[Bn1] [Bnn] ൨ = ൤

[AB11] [AB1n]
[ABn1] [ABnn]	൨

Conventional matrix multiplication between [A] and [B]. Multiplication
between entities is done using ‘MM2’ function
(eg: [AB11] = MM2([A11], [B11]) + MM2([A12], [B21])..)

3) Meshing and DOF numbering: Based on input data, the program creates a meshed model of the structure with new nodes and
elements (Refer Figure 3). Nodes and elements of the meshed structure were assigned new numbers. During meshing, each user-
defined element was split into ‘n’ equal parts, where ‘n’ is the seed number entered by the user for that particular element. The three
degrees of freedom at each newly created node was assigned a number by the program and this data was stored in the ‘Nodes’ array
(Refer Table II). Node numbers assigned by the program starts at 1 and progresses in ascending order. DOF numbers at each node
were assigned as follows.
nu1i = 3.(ni-1) + 1, nu2i = 3.(ni-1) + 2 and nu3i = 3.(ni-1) + 3,
where ni is the node number, and nu1i to nu3i are the degrees of freedom of that node.
Refer Fig. 3 for an example that demonstrates structural meshing and numbering. In analysis matrices for the full structure, location
(row and column) of the stiffness/force terms corresponding to each DOF of an element was as per the program assigned number for
that particular DOF. Structures of arrays used to store node and element data after meshing are shown in Table II.

TABLE II
DATA ARRAYS

Array description and contents Array structure

 Array for storing node data entered by user – ‘GivnNodes’
 Ni is user defined node number, xi, yi are co-ordinates
 ni is the node number assigned by the program

൦

N1
x1
y1
n1

 . .				

Nn
xn
yn
nn

 ൪

 Array for storing element data entered by user – ‘GivnElems’
 Ni1, Ni2 are the first and second nodes of the ith element
 pi is the element material property ID and sidi the section profile ID (pi and sidi

refers to the column number in ‘Properties’ array and ‘Sections’ arrays respectively)
 si is the seed number (for meshing)

⎣
⎢
⎢
⎢
⎡
N11
N12
p1
s1

sid1

 . .

Nn1
Nn2
pn
sn

sidn

⎦
⎥
⎥
⎥
⎤

 Array for storing section profile data – ‘Sections’
 bi, di are the breadth and depth of each section profile

൤b1
d1

 . . bN
dN
൨

 Array for storing material properties – ‘Properties’
 Ei is Young’s modulus and ߥi is Poisson’s ratio

ቂ
ν1
E2

 . .
νn
En
ቃ

 Array for storing joint load data – ‘JntLdTable’
 GNi refers to the user defined node number for application of ith load. Fxi, Fyi and

Mzi are the forces and moments, and ni is the program defined node number.

⎣
⎢
⎢
⎢
⎢
⎡
GN1
Fx1
Fy1
Mz1
ss1
es1

 . .

GNn
Fxn
Fyn
Mzn
ssn
esn

⎦
⎥
⎥
⎥
⎥
⎤

Array for storing line force data is ‘LfLdTable’ and array for storing body force data is ‘BfLdTable’. Both of them have
similar array structures to ‘JntLdTable’, but with the row for moment loading absent.

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
5

 Array for storing boundary displacements – ‘PreDefDisps’
 GNi refers to the user defined node number for application of ith displacement. Δi is

the displacement
 ssi and esi are the starting and ending steps ⎣

⎢
⎢
⎢
⎡

GN1
DOF1

Δ1
ss1
es1

 . .			

GNn
DOFn

Δn
ssn
esn

⎦
⎥
⎥
⎥
⎤

 Array for storing node details of meshed structure - ‘Nodes’
 xi, yi are co-ordinates of ith node, nu1i, nu2i and nu3i are the numbering of the

degrees of freedom at each node.

⎣
⎢
⎢
⎢
⎢
⎡

n1
x1
y1

nu11
nu21
nu31

 . .

nn
xn
yn

nu1n
nu2n
nu3n

	

⎦
⎥
⎥
⎥
⎥
⎤

Array for storing element details of meshed structure is ‘Elements’, which has similar structure as ‘GivnElems’ array.

D. Displacement Interpolation Functions
Displacement fields within the element were defined by Hermitian polynomials. Shear deformations were not considered. The 6
nodal degrees of freedom were numbered as shown in Figure 4. u3 and u6 are the slopes of rotational displacements at the element
nodes. Displacement interpolation functions corresponding to each degree of freedom ‘i', designated as Hxi and Hyi (for X and Y
directions respectively) are shown in Table III. For definition of the interpolation functions, the origin of co-ordinates was
considered to be node 1, with X axis located along element axis.
Since strains and stresses were calculated in co-rotational system [5], only three degrees of freedom are relevant for strain-
displacement transformation matrix – u4, u3 and u6. Displacement interpolation matrix used for strain calculations is shown below.

[H1] 	= 		 ቂXYቃ =	 ൤
Hx4 Hx3 Hx6
Hy4 Hy3 Hy6

 ൨

User defined structure

Program defined structure (after meshing)

Numbering of degrees of freedom

Fig. 3 Meshing and DOF numbering

The displacement fields due to all 6 DOF are relevant for the calculation of nodal force components due to applied body forces.

6 9 18 15

3

8

12

5 2

16

14

13

11

10 7

1

4

17

N2 N3

1 2

3 5 4

1 3 4

6 2
Elements Nodes

1

2 5

N1

Nodes
Elements

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
6

Therefore the corresponding displacement interpolation matrix is:

[H2] 	= 	 ቂXYቃ = ൤
Hx1 Hx2 Hx3
Hy1 Hy2 Hy3

Hxସ Hx5 Hx6
Hy4 Hy5 Hy6

 ൨

Deformations of the centerline of the beam are required in calculation of nodal forces due to line forces. Therefore the required
displacement interpolation matrix is as follows

[H3] 	= 	 ቂXYቃ = ൤
Hx1 0 0
Hy1 Hy2 Hy3

Hx4 0 0
Hy4 Hy5 Hy6

 ൨

In all the above transformation matrices, Hxi and Hyi were defined in Type 1 polynomial form (Ref. Section II).

Fig. 4 Element degrees of freedom

TABLE III
DISPLACEMENT INTERPOLATION FUNCTIONS

Hx1 = 1- x/L Hy1 = 0

Hx2 = 6xy/L2 - 6x2y/L3 Hy2 = 1- 3x2/L2 + 2x3/L3

Hx3 = -y + 4xy/L - 3x2 y/L2 Hy3 = x- 2x2/L+ x3/L2

Hx4 = x /L Hy4 = 0

Hx5 = 6xy /L2 + 6x2y)/L3 Hy5 = 3x2/L2 - 2x3/L3

Hx6 = 2xy /L - 3x2y/L2 Hy6 = - x2/L2 + x3/L3

E. Co-ordinate Systems And Transformation Matrices
Local (for each element) and Global (for the entire structure) co-ordinate systems were defined in the program as shown in Fig. 5.
Local co-ordinate system of an element was defined using its nodes, with origin at first node of the element and X axis passing
through the second node. The input loads and boundary conditions had to be defined with respect to global co-ordinate system.
Stiffness and nodal force matrices (except for joint loads) for each element were calculated in local co-ordinate system, transformed
to global co-ordinate system and then assembled into the global matrices of the entire structure. As described in Section II, only 3
degrees of freedom - u4, u3 and u6 (Figure 4) were considered for strain-displacement transformation matrices. The transformation
matrix required for converting 6 DOF in global co-ordinate system to 3 DOF in local co-rotational system [5] is given by

[T1] = ቈ
- cos θ - sin θ

- sin θ /L
- sin θ /L

cos θ /L
cos θ /L

0 cos θ
1
0

sin θ /L
sin θ /L

sin θ 0

- cos θ /L
- cos θ /L

0
1

 ቉

where ‘θ’ is the angle (anti-clockwise) between global co-ordinate system and element local co-ordinate system.
The nodal force matrices due to line forces and body forces were calculated for 6 DOF in local co-ordinate system. Transformation
matrix for their conversion to global co-ordinate system is

u1

u2

u3
u4

u5

u6

Element

Node 1
Node 2

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
7

[T2] =

⎣
⎢
⎢
⎢
⎢
⎡
 cos θ sin θ 0 0 0 0
	- sin θ 		cos θ 0
 0 0 1

0 0 0
0 0 0
0 0 0

 0 0 0
 0 0 0
cos θ sin θ 0
- sin θ				 cos θ 0
 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎤

The transformation matrix for converting user-defined line loads and body forces in global co-ordinate system to local co-ordinate
system is

[T3] = ቂ cos θ sin θ
- sin θ cos θ

ቃ

All the three transformation matrices mentioned above were defined as ‘Type 2’ polynomials (Refer Section II).

Fig. 5 Co-ordinate systems and reference configuration

III. FORMULATION OF EQUILIBRIUM EQUATIONS

Equilibrium configuration of the structure for a given set of loads and boundary conditions was determined by the solving
continuum mechanics virtual work equation in the incremental format. The methodology used to linearize incremental equilibrium
equation, and to prepare the required matrix equations, was closely based on the presentations in [5] and [7]. The methods are
summarized in this section.

A. Total Lagrangian Continuum Formulation
In the Total Lagrangian continuum mechanics formulation [7], equilibrium of the body at time t+∆t, based on the principle of virtual
displacements is expressed as follows,

X

Y

Global co-ordinate system

Element deformed
configuration at

time t

Element reference
configuration at time t - For

strain and external load
calculation

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
8

dvδS ij
tt

ij
V

tt 0
00

0

 = t+∆tR (1)

where t+∆tR is the total external virtual work due to uniform line forces with components k
tt m

0 , body forces with components

k
tt b

0 and nodal loads jk ,

Rtt  = dLδum kk
L

tt 0
0

0
  + dvδub kk

V

tt 0
0

0
  + kk δuj .Σ (2)

In eqn(2) kδu is the virtual variation in displacement components at time t+∆t. In eqn(1), ij
ttδ 

0 is the virtual variation in the

Cartesian components of Green-Lagrangian (GL) strain tensor (in the configuration at time t+∆t referred to the configuration at time

0), and ij
tt S

0 are the Cartesian components of the 2nd Piola-Kirchoff (PK2) stress tensor in the configuration t+∆t and measured in

the configuration at time 0.

ij
tt 
0 =).(

2
1

,0,0,0,0 jk
tt

ik
tt

ij
tt

ji
tt uuuu   (3)

ij
tt S

0 = rs
tt

ijrs
tt C 

00 (4)

where i
tt u

0 are displacements at time t+∆t, measured in configuration at time 0, and ijrs
tt C

0 are the tensor components of the

constitutive relationship at time t+∆t.

B. Linearized Incremental TL Formulation
As shown by Bathe and Bolorouchi [7], eqn(1) can be written in linearized incremental format as follows:

dveδeC ijrs
V

ijrs
0

000
0
 + dvδS ijij

V

t 0
00

0

 = t+∆tR - dveδS ijij
V

t 0
00

0
 (5)

Where the strain increment ij0 , has been decomposed into

Linear part, ije0 =)..(
2
1

,0,0,0,0,0,0 ikjk
t

jkik
t

ijji uuuuuu  (6)

And nonlinear part, ij0 =).(
2
1

,0,0 jkik uu (7)

Since Total Lagrangian formulation is combined with Corotational formulation here, strain tensors at time t+∆t were calculated
w.r.t. the reference configuration at time t (Figure 5). Reference configuration at time t = Undeformed element oriented along X axis
of the local co-ordinate system at time t. The subscript ‘0’ in equations in this section stands for the aforementioned reference
configuration.

For calculations done in the program, linear incremental strain (ije0) was further divided as follows

ije0 = 1
0 ije + 2

0 ije (8)

, where 1
0 ije =)(

2
1

,0,0 ijji uu  (9)

2
0 ije =)..(

2
1

,0,0,0,0 ikjk
t

jkik
t uuuu  (10)

2
0 ije incorporates the effect of existing strains at time t, on the incremental strains.

And ij
t S0 was decomposed into linear and nonlinear parts as

ij
t S0 = 

ij
te

ij
t SS 00  (11)

, where e
ij

t S0 = rs
t

ijrs
t eC 00 (Linear part) (12)

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
9


ij

t S0 = rs
t

ijrs
tC 00 (Nonlinear part) (13)

, where ij
t e0 =)(

2
1

,0,0 ij
t

ji
t uu  (14)

ij
t0 =).(

2
1

,0,0 jk
t

ik
t uu (15)

Based on eqns (8) to (15), eqn(5) was decomposed as eqn(16).

dveδeC ijrs
V

ijrs
0

0
1

00
0
 + dveδeC ijrs

V
ijrs

0
0

2
00

0
 + dvδS ij

e
ij

V

t 0
00

0

 + dvδS ijij
V

t 0
00

0



= Rtt  - dveδS ij
e
ij

V

t 0
00

0
 - dveδS ijij

V

t 0
00

0

 (16)

C. Matrix Form Of Equilibrium Equations – Total Lagrangian Formulation
The force/moment equations corresponding to eqn(16) in matrix format is calculated here as eqn(17), and that corresponding to
eqn(2) as eqn(18).

[0K0].  u0 + [0K1].  u0 + [0K2].  u0 + [0K3].  u0 = [R] - [0IF1] + [0IF2] (17)

[R] = [0LF].ൣ m0
t+∆t ൧ + [0BF].	ൣ b0

t+∆t ൧ + [0JL] (18)
Subscript ‘0’ indicates that the matrices in (17) and (18) are calculated w.r.t. local co-ordinate system (Figure 5).  u0 is the
incremental nodal displacement vector in local system, which consists of u4, u3 and u6, as described in Section II.
In eqn(17), [0K0], [0K1], [0K2] and [0K3] are stiffness matrices, and [0IF1], [0IF2] are nodal load vectors corresponding to elemental
internal stresses. In eqn(18),	ൣ m0

t+∆t ൧ and ൣ b0
t+∆t ൧ are the load vectors at time t+∆t (load per unit length and load per unit volume

respectively) for line forces and body forces in local co-ordinate system. [0LF] and [0BF] are transformation matrices for converting
the distributed force vectors (in local co-ordinate system) to nodal load vectors. Combining eqns(17) and (18), equilibrium equation
of an element in matrix form is

[0K0123].  u0 = [0JL] + [0LF].ൣ m0
t+∆t ൧ + [0BF].ൣ b0

t+∆t ൧ - [0IF12] (19)
,where [0K0123] = [0K0] + [0K1] + [0K2] + [0K3] (20)
and [0IF12] = [0IF1] + [0IF2] (21)

Transforming eqn (19) to global co-ordinate system,

[T1]T.[K0123].[T1].[u] = [JL] + [T2]T[0LF].[T3].ൣ mt+∆t ൧ + [T2]T[0BF].[T3].ൣ bt+∆t ൧ - [T1]T.[0IF12] (22)
,where [u] is the incremental nodal displacement vector in global co-ordinate system, consisting of 6 DOF. ൣ mt+∆t ൧ and ൣ bt+∆t ൧ are
load vectors in global co-ordinate system. [JL] is joint load vector in global co-ordinate system. Eqn(22) can be made more effective
with addition of an extra stiff ness matrix, as discussed in the next section.

D. Combining Corotational Formulation With Total Lagrangian Formulation
Eqn(22) basically attempts to the find the structural configuration at time t+Δt, based on the configuration and applied loads at time
t+∆t. The variation of internal load w.r.t. incremental nodal displacements is linearized, but variation of the co-ordinate system
transformation matrices are ignored, which can limit solvability of problems involving large rotations. In corotational formulation,
variation of the transformation matrix [T1] due to incremental nodal displacements is considered. An additional tangent stiffness
matrix is thus obtained, which improves consistency of linearization. Derivation of this additional stiffness matrix is shown in
eqn(23) to eqn(30), based on the presentation by Crisifield [5] Starting afresh and looking at element equilibrium again, nodal load
vector corresponding to element internal stresses at time t is

[IntF] = [T1]T[0IntF] (23)
,where [IntF] , [0IntF] are element internal load matrices in global and local co-ordinate system respectively.
Incremental variation of eqn(23) gives

δ[IntF] = [T1]T.δ[0IntF] + δ[T1]T.[0IntF] (24)

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
10

Left hand side (LHS) of eqn(24) represents the complete stiffness matrix in global co-ordinate system, i.e. the variation in internal
forces w.r.t. incremental displacements. LHS of eqn(22) is the first term of Right hand side (RHS) of eqn(24), with some
approximations due to linearization. The second term of RHS of eqn(24) is the additional stiffness matrix which captures the
variation in transformation matrix [T1].
As shown by Crisifield [5],

δ[T1]T. [0IntF] = N Lൗ . ([z].[z]T).[u]		+
(M1+ M2)

Lൗ . ([r].[z]T+[z].[r]T).[u]		 (25)
,where N is the axial force in the element, M1, M2 are end moments , L is the deformed length of the element, and

[z] =

⎣
⎢
⎢
⎢
⎢
⎡

sin θ
-cos θ

0
- sin θ
cos θ

0 ⎦
⎥
⎥
⎥
⎥
⎤

 , [r] =

⎣
⎢
⎢
⎢
⎢
⎡- cos θ
- sin θ

0
cos θ
sin θ

0 ⎦
⎥
⎥
⎥
⎥
⎤

where ‘θ’ is the angle (anti-clockwise) between global co-ordinate system and element local co-ordinate system. In this program, [z]
and [r] were defined as matrices with ‘Type 2’ polynomials as entities (Section II). Considering the new additional stiffness matrix
as [K4], the total stiffness matrix of an element in global co-ordinate system is

[K01234] = [K0123] + [K4] (27)
,where [K0123] = [T1]T.[0K0123].[T1]

and [K4] is calculated as shown in eqn(25).
Thus the equilibrium equation in global co-ordinate system becomes

[K01234].[u] = [JL] + [LF].ൣ mt+∆t ൧ + [BF].ൣ bt+∆t ൧ - [IF12] (28)
,where [LF] = [T2]T[0LF].[T3] (29)
and [BF] = [T2]T[0BF].[T3] (30)

IV. MATRIX GENERATION ALGORITHM
Accurate and efficient computation of the stiffness and nodal force matrices in eqn(28) is perhaps the most important part of a
nonlinear FEA program. During analysis, these matrices need to be calculated repetitively and this can cost a major portion of
runtime. When material nonlinearity is not considered, it is possible to conduct all the required integration operations prior to start
of iterative analysis, which reduces runtime significantly. The methodology used in this program is to generate generalized forms of
the stiffness and nodal load matrices prior to start of iterative analysis and then use them repetitively without much computational
cost. The terms of these general matrices were in polynomial format (‘Type3’ polynomial form – Refer Section II), and were
converted to numerical format during analysis. Sections IV-A to IV-C describe the procedures used to prepare the necessary
matrices.

A. Basic Matrices
Some basic block matrices were prepared prior to calculation of strain-displacement transformation matrices. They are shown
below. ‘Variant’ data type in VBA was used to store these block matrices.

[dUdx] = ൤d(Hx4)
dx

d(Hx3)

dx

d(Hx6)
dx

൨

[dVdy] = ቈ
d(Hy4)

dy

d(Hy3)
dy

d(Hy6)

dy
቉

[dUdy] = ቈ
d(Hx4)

dy

d(Hx3)
dy

d(Hx6)

dy
቉

[dVdx] = ൤
d(Hy4)

dx

d(Hy3)
dx

d(Hy6)

dx
൨

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
11

where Hxi and Hyi are displacement interpolation functions (Section II).
d(Hxi)

dx
 ,

d(Hyi)

dx
 were ‘Type 1’ polynomials calculated using

custom made functions for differentiation of ‘Type 1’ polynomials.
Using the basic matrices above, the following matrices were calculated

[dUdxdUdx] = [dUdx]T.[dUdx]

[dUdydUdy] = [dUdy]T.[dUdy]

[dUdxdUdy] = [dUdx]T.[dUdy]

[dUdydUdx] = [dUdy]T.[dUdx]

[dVdxdVdx] = [dVdx]T.[dVdx]

[dVdydVdy] = [dVdy]T.[dVdy]

[dVdxdVdy] = [dVdx]T.[dVdy]

[dVdydVdx] = [dVdy]T.[dVdx]

B. Strain-Displacement And Stress-Displacement Transformation Matrices
Transformation matrices for various strain and stress tensors were calculated as described here. The strain-displacement
transformation matrix for ij

t e0 was defined as a block matrix. Transformation matrix for each strain component were defined

separately, and combined into a single matrix as shown below.
Considering a single component of strain, xx

t e0 = xxu ,0 = [dUdx].[u0
t] = [GLe0xx].[u0

t]

i.e. [GLe0xx] = [dUdx] (31)
where [u0

t] is nodal displacement vector in corotational system at time t. Calculation of [u0
t] is discussed in Appendix A.

Similarly,

[GLe0yy] = [dVdy] (32)

[GLe0xy] = [dUdy] + [dVdx] (33)

Combining the eqns(31) to (33), [GLe]	 = ቎
[GLe0xx]
[GLe0yy]
[GLe0xy]

቏

[GLe]	 was defined as a block matrix to suit the computations that were to be done using it later. Strain-displacement
transformation matrix for ij

t0 was also defined as a block matrix, as follows.

Considering a single strain component,

xx
t0 =)(

2
1

,0,0,0,0 xy
t

xy
t

xx
t

xx
t uuuu 

=
2
1 ([dUdx].[u0

t].[dUdx].[u0
t] + [dVdx].[u0

t].[dVdx].[u0
t])

 =
2
1 ([u0

t]T.[dUdx]T.[dUdx].[u0
t] + [u0

t]T.[dVdx]T.[dVdx].[u0
t])

 =
2
1 ([u0

t]T.ൣ[dUdx]T.[dUdx] + [dVdx]T.[dVdx]൧ .[u0
t])

=
2
1 ([u0

t]T.ൣ[dUdxdUdx] + [dVdxdVdx]൧ .[u0
t])

=
2
1 ([u0

t]T.[GLn0xx].[u0
t])

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
12

i.e. [GLn0xx]	 =
2
1 ([dUdxdUdx] + [dVdxdVdx]) (34)

Similarly,

[GLn0yy]	 =
2
1 ([dUdydUdy] + [dVdydVdy]) (35)

[GLn0xy]	 =
2
1 ([dUdxdUdy] + [dVdxdVdy]) (36)

[GLn0yx] =
2
1 ([dUdydUdx] + [dVdydVdx]) (37)

Combining eqns(34) to (36), [GLn] was defined as ቎
[GLn0xx]
[GLn0yy]
[GLn0xy]

቏

Strain-displacement transformation matrix for 1
0 ije was defined as,

[B0] =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

d(Hx4)
dx

d(Hx3)
dx

d(Hx6)
dx

d(Hy4)
dy

d(Hy4)
dy

d(Hy4)
dy

d(Hx4)
dy

+
d(Hy4)

dx

d(Hx3)
dy

+
d(Hy3)

dx

d(Hx6)
dy

+
d(Hy6)

dx ⎦
⎥
⎥
⎥
⎥
⎥
⎤

i.e. [B0].  u0 =

⎣
⎢
⎢
⎢
⎡

1
0

1
0

1
0

xy

yy

xx

e
e
e

⎦
⎥
⎥
⎥
⎤

The strain-displacement transformation matrix for 2
0 ije was defined as a block matrix as follows:

Considering a single component of strain, 2
0 xxe = xyxy

t
xxxx

t uuuu ,0,0,0,0 

Proceeding as done for xx
t0 calculation earlier,

2
0 xxe = [u0

t]T.[B1xx].  u0 , where [B1xx] = 2.[GLn0xx]

Similarly,

[B1yy] = 2.[GLn0yy]

[B1xy] = [GLn0xy] + [GLn0yx]

Combining the above matrices, [B1]	 = ቎
[B1xx]
[B1yy]
[B1xy]

቏

Constitutive law (ijrs
tC0 and ijrsC0) matrices for the 2D beam element were defined as

[C] =	 	቎
E 0 0
0 E 0
0 0 E

2.(1+ ν)ൗ
቏ , where the entities are ‘Type 1’ polynomials (Section II).

Stress-displacement transformation matrices for e
ij

t S0 (in block matrix form) is

[PK2e] = MM1([C],[GLe]) (38)

Stress-displacement transformation matrices for 
ij

t S0 (in block matrix form) is

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
13

 [PK2n] = MM1([C],[GLn]) (39)

Strain-displacement transformation matrices for ijeδ 0 is

[DelE] = [B0]T (40)

Strain-displacement transformation matrices for ijδ 0 (in block matrix form) is

[DelN] = [B1] (41)

C. Calculation Of Stiffness and Nodal Force Matrices
Calculation steps for all the stiffness and nodal forces matrices are described in this section.

1) Calculation Steps For [0K0] Matrix:
[A] = [DelE].([C].[B0])

[GenK0(i)] = ∫ [A] dv0
Vబ = ቂ

a11		.		. a1n
an1		.		. ann

ቃ

where aij is a ‘Type 3’ polynomial (Section II). This is a generalized polynomial form of [0K0] matrix. Similar generalized
matrices are prepared for all section profiles and stored as [GenK0].

i.e. [GenK0] = ቎
∫ [DelE]. ([C].[B0]) dv0 .. For section 1V0

…
 " .. For section N

቏

For each element, convert its [GenK0(i)] to numeric form using ‘E’ and ‘L’ values to get the [0K0] matrix.
Steps #1 and #2 were done before the start of iterative analysis.

2) Calculation Steps For [0K1] Matrix:
[A] = MM1([DelE], MM1([C],[B1]))

[GenK1(i)] = ∫ [A] dv0
Vబ = ቈ

[a1].
[an]

቉	, where [ai] has ‘Type 3’ polynomial entities

 i.e. [GenK1] = ൦
∫ [DelE] ⊕ ([C]⊕[B1]) dv0 .. For section 1V0

.
 " .. For section N

൪, where ⊕ is MM1

For each element, convert its [GenK1(i)] to numeric form and left multiply all entities with [u0
t]T.

 i.e. ቈ
[u0

t]T.[b1]
.

[u0
t]T.[bn]

቉ = ቈ
[c1]

.
[cn]

቉,

where [bi] is the numeric form of [ai] ,and [0K1] is assembled such that 0K1(i,j) = ci(j)
Steps #1 and #2 were done before the start iterative analysis.

3) Calculation Steps For [0K2] Matrix:

[A] = MM3([GenPK2e]T,[DelN])

[GenK2(i)] = ∫ [A] dv0
V0 = ൤

[a11]		.		. [a1n]
[an1]		.		. [ann]൨, where ൣaij൧ has ‘Type 3’ polynomial entities.

i.e. [GenK2] = ൦
∫ [GenPK2e]T ⊕ [DelN] dv0 .. For section 1V0

.
 " .. For section n

൪, where ⊕	is MM3

For each element, convert its [GenK2(i)] to numeric form and right multiply all entities with [u0
t] to get [0K2] , i.e.

 ቈ
[b11].[u0

t]		.		. [b1n].[u0
t]

[bn1].[u0
t]		.		. [bnn].[u0

t]቉ = [0K2], where ൣbij൧ is the numerical form of ൣaij൧

Steps #1 and #2 were done before the start iterative analysis.

4) Calculation Steps For [0K3] Matrix:

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
14

[A] = MM3([GenPK2n]T,[DelN])

[GenK3(i)] = ∫ [A] dv0
V0 to get ൤

[a11]		. [a1n]
[an1]		. [ann]൨, where ൣaij൧ has ‘Type 3’ polynomial entities.

i.e. [GenK3] = ൦
∫ [GenPK2n]T ⊕ [DelN] dv0 .. For section 1V0

.
 " .. For section n

൪, where ⊕ is MM3

For each element, convert its [GenK3(i)] to numeric form and right multiply all entities with [u0
t] and left multiply with

[u0
t]T to get [0K3], i.e. ቈ

[u0
t]T.[b11].[u0

t]				.		. [u0
t]T.[b1n].[u0

t]
[u0

t]T.[bn1].[u0
t]			.		. [u0

t]T.[bnn].[u0
t]቉ = [0K3], where ൣbij൧ is the numeric form of ൣaij൧

Steps #1 and #2 were done before the start iterative analysis.

5) Calculation Steps For [0IF1] Matrix:

[0IF1] = [0K0].[u0
t]

6) Calculation Steps For [0IF2] Matrix:
[A] = MM1([DelE],[GenPK2n])

[GenIF2(i)] = ∫ [A] dv0
V0 = ቈ

[a1].
[an]

቉, where [ai] has ‘Type 3’ polynomial entities.

i.e. [GenIF2] = ൦
∫ [DelE]T ⊕ [GenPK2n] dv0 .. For section 1V0

.
 " .. For section n

൪, where ⊕ is MM1

For each element, convert [ai] to numeric form and right multiply all entities with [u0
t] and left multiply with [u0

t]T to get

[0IF2], i.e. ቈ
[u0

t]T.[b1]. [u0
t]

.
[u0

t]T.[bn]. [u0
t]
቉		= [0IF2], where ൣbij൧ is the numeric form of ൣaij൧.

Steps #1 and #2 were done before the start iterative analysis.

7) Calculation Steps For [K4] Matrix:
Calculation of [K4] matrix involves only numerical operations, and was done as per eqn(25) in each iteration, using [0IF12]
to get N, M1 and M2.

8) Calculation Steps For [0LF] Matrix:

Calculate [GenLF] = ∫ [H3]TdlL0 , where [GenLF] consists of ‘Type 3’ polynomials

Convert [GenLF] to numerical form to get [0LF].
Step #1 was done prior to iterative analysis

9) Calculation Steps For [BF] Matrix:

Calculate [GenBF] = ൦
∫ [H2]TdvV0 	..For section 1

.

 " For section n

൪, where [GenBF(i)] has ‘Type 3’ polynomial entities.

 For each element, convert its [GenBF(i)] to numerical form to get [BF].
Step #1 was done prior to start of iterative analysis.

V. SOLUTION PROCEDURE
The solution procedure used in the program was based on Newton-Raphson method with line searches [5]. As usually done in
conventional nonlinear FEA, a control algorithm was employed to stepwise increase/decrease the magnitude of applied loads and
boundary displacements based on analysis convergence. Small increment sizes were considered at the beginning of a step and
modified later, based on convergence characteristics. Load control algorithms are an important part of nonlinear FEA programs, and

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
15

can affect runtimes significantly. Ideally such algorithms must be tailor made to suit the problem being analyzed. For example,
when buckling and post-buckling behavior is to be simulated by programs such as these, arc length methods are recommended [14],
[15].
For the analyses presented here, a simple control algorithm was considered. Magnitudes of applied loads were initiated at 0.05 and
initial increment size was 0.05. Convergence was decided based on the criteria that maximum residual force at any DOF shall be
less than 0.05% of the average magnitude of externally applied forces. For Newton-Raphson solution procedure, maximum number
of iterations allowed was 50. Increment size was doubled when convergence was achieved, and halved when otherwise. Pseudocode
of the main procedure is provided below.
Boundary conditions were applied using Lagrangian multiplier method [5]. After calculation of the global stiffness matrices and
nodal force matrices, they were modified to incorporate boundary constraints. Refer below for the pseudocodes of two of the basic
subroutines of the program.

A. Pseudocode Of The Main Procedure
Sub Main()
Call procedure ReadInput

*ReadInput – A procedure that reads user input and creates data arrays (Table II) and index arrays for multi-step
analysis

Plot initial configuration of structure
 *Plot using a custom function based on the chart feature in VBA
Call procedure DefineGeneralMatrices

* DefineGeneralMatrices : Subroutine that creates and stores generalized stiffness and nodal force matrices in polynomial
form - [GenK0], [GenK1], [GenK2], [GenK3], [GenIF1], [GenIF1], [GenLF] and [GenBF]. Also creates transformation
matrices [T1], [T2], [T3], [r] and [z] in polynomial form. (Section IV)

step = 1
Do while step <= Maxstep *MaxStep = Total number of analysis steps

Call procedure StructureSolver
*StructureSolver : A subroutine that iteratively solves incremental virtual work equation (Section III - Eqn(28)) to
find equilibrium configuration, while logging necessary data.

If equilibrium is not achieved Then
 Exit Loop

 Else
 step = step + 1
 Endif
Loop
Print and plot required output
End Sub

As shown above, the main procedure calls three other procedures during execution – ReadInput, DefineGeneralMatrices and
StructureSolver. StructureSolver is the procedure that finds equilibrium at the end of a step. StuctureSolver in turn calls the
procedure AssembleMatrices to create the stiffness and nodal force matrices required during analysis. Pseudocode of the procedure
‘AssembleMatrices’ is provided below.

B. Pseudocode Of The Procedure- ‘AssembleMatrices’
Sub AssembleMatrices()
i = 1
Do While i <= ElmTotal *ElmTotal = Total number of elements
 For the ith element,

Calculate Lt, XYAngle
* Lt = length of the element at current time
XYAngle = Current angle of the element w.r.t. global X axis

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
16

Identify element material and section properties from ‘Sections’ and ‘Properties’ arrays (Table II)
Prepare numeric form of the transformation matrices – [T1], [T2], [T3], [r] and [z]

*Use XYAngle and Ln to calculate co-ordinate transformation matrices
Calculate [ElemDisp]

*[ElemDisp] = Nodal displacement vector [u0
t] in local co-rotational system.

Rotational displacements at nodes of an element in local system are calculated by the method proposed by De
Souza [16], which helps in dealing in arbitrarily large rotations.

 Calculate [IF12] of the element *(Section IV)
*Note: For the below matrices, subscript ‘I’ above stands for ‘Initialized Loads’ and ‘P’ for ‘Propagated Loads’

Prepare load matrices ൣ m0
t+∆t ൧

I and ൣ b0
t+∆t ൧

I for line and body forces *(Section IV)

Prepare load matrices ൣ m0
t+∆t ൧

P and ൣ b0
t+∆t ൧

P for line and body forces *(Section IV)
Calculate [LF] and [BF] of the element *(Section IV)

 Calculate [LF].ൣ m0
t+∆t ൧

I + [BF].ൣ b0
t+∆t ൧

I and assemble into [InitLineBodyLoads]

Calculate [LF].ൣ m0
t+∆t ൧

P + [BF].ൣ b0
t+∆t ൧

P and assemble into [PropLineBodyLoads]
*[InitLineBodyLoads] – Nodal load vector for summation of line forces and body forces initialized in the current step.
*[PropLineBodyLoadss] – Nodal load vector for summation of line forces and body forces propagated from previous step

 If AsmK = TRUE Then
Calculate [K01234] of the element *(Section IV)

End If
 i = i + 1
Loop
[TotInitLoads] = [InitLineBodyLoads] + [InitJointLoads]

*[TotInitLoads] – Total loads initialized in the current step.
*[InitJointLoads] – Joint loads initialized in the current step.

[TotPropLoads] = [PropLineBodyLoads] + [PropJointLoads]
*[TotPropLoads] – Total loads propagated from previous step.
*[PropJointLoads] – Joint loads propagated from previous step.

End Sub

VI. BENCHMARK TESTS
Accuracy and efficiency of the program was verified via NAFEMS benchmark tests [17]. Problems considered were cases of large
deformations due to moment loading, transverse loading and axial loading. Comparisons were done with benchmark results
corresponding to thick beam elements with 6 degrees of freedom (TK6 in the reference document).

A. Straight Cantilever With End Moment
From [17], NLGB2 – Straight cantilever with end moment

 L

Cross section

d

t

X, u

Y, v M B
A

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
17

Fig. 6 Straight cantilever with end moment

Geometry : L = 3.2m, d = 0.1m, t = 0.1m
Boundary conditions : u = v = θ = 0 at Point B
Material properties : E = 210x109 N/m2

 0 = ߥ ,

Loading : Concentrated moment (M) at Point A (Figure 6)
Deformed shape at full circle configuration (16 elements) is shown in Figure 7.
Results are shown in Table IV.

Fig. 7 NLGB2 – Full circle configuration (16 elements)

TABLE IV
BENCHMARK TEST RESULTS – STRAIGHT CANTILEVER WITH END MOMENT

 *Runtime on Intel i5 3.2GHz processor – 3.708 sec

B. Straight Cantilever With Transverse End Point Load
From [17], NLGB4 – Straight cantilever with transverse end point load

-0.2

0.2

0.6

1

-0.7 0.3 1.3 2.3 3.3

Initial configuration

Closed
form

solution

4 elements 8 elements 16 elements

Benchmark
solution

Program
solution

Benchmark
solution

Program
solution

Benchmark
solution

Program
solution

Deformation at half circle configuration, M = πEI/L

UA/L -1.000 -1.010 -0.977 -1.010 0.994 -1.010 -0.999

VA/L 0.637 0.647 0.648 0.634 0.640 0.631 0.637

θA/2π 0.500 0.505 0.489 0.505 0.497 0.505 0.499

Deformation at full circle configuration, M = 2πEI/L

UA/L -1.000 -0.989 -1.040 -0.990 -1.021 -0.990 -1.005*

VA/L 0.000 0.000 0.005 0.000 0.001 0.000 0.000*

θA/2π 1.000 1.010 0.958 1.010 0.979 1.010 0.995*

Final configuration

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
18

Fig. 8 Straight cantilever with transverse end point load

Geometry, Boundary conditions and Material properties : Same as in Section VI-A
Loading : Concentrated force (P) at Point A (Figure 8)
Deformed shape at end point of test (8 elements) is shown in Figure 9.
Results are shown in Table V.

Fig. 9 NLGB4 – End point of test (8 elements)

-3.2

-2.7

-2.2

-1.7

-1.2

-0.7

-0.2
0 1 2 3

Initial
Configuration

Final
Configuration

X, u

Y, v
B

A

P

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
19

TABLE V
BENCHMARK TEST RESULTS – STRAIGHT CANTILEVER WITH TRANSVERSE END POINT LOAD

 *Runtime on Intel i5 3.2GHz processor – 1.500 sec

C. Straight Cantilever With Axial End Point Load
From [17], NLGB5 – Straight cantilever with axial end point load

Fig. 10 Straight cantilever with axial end point load
Geometry, Boundary conditions and Material properties : Same as in Sections VI-A and VI-B
Loading : Concentrated force (P and Q) at Point A (Figure 10)
 Q = P/1000
Deformed shape at end point of test (16 elements) is shown in Figure 11.
Results are shown in Table VI.

 Closed
form

solution

2 elements 4 elements 8 elements

Benchmark
solution

Program
solution

Benchmark
solution

Program
solution

Benchmark
solution

Program
solution

Deformation at midpoint of test, P = 5EI/L2

UA/L -0.388 -0.370 -0.392 -0.385 -0.388 -0.389 -0.388

VA/L -0.714 -0.710 -0.706 -0.714 -0.713 -0.716 -0.714
θA/

(π/2) -0.774 -0.822 -0.785 -0.787 -0.776 -0.779 -0.774

Deformation at end of test, P = 10EI/L2

UA/L -0.555 -0.539 -0.568 -0.551 -0.556 -0.556 -0.555*

VA/L -0.811 -0.807 -0.790 -0.810 -0.808 -0.812 -0.811*
θA/

(π/2)
-0.911 -0.967 -0.931 -0.925 -0.914 -0.915 -0.911*

P

X, u

Y, v

B

A

Q

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
20

Fig. 11 NLGB5 – End point of test (16 elements)

TABLE VI
BENCHMARK TEST RESULTS – STRAIGHT CANTILEVER WITH AXIAL END POINT LOAD

 # Solution did not converge.

 *Runtime on Intel i5 3.2GHz processor – 4.221 sec

D. Discussion Of Results
NLGB2 (Section VI-A) was a large bending problem, with high bending moment throughout the structure. Program results show
that a relatively fine mesh is required to attain similar accuracy as the benchmark solutions. NLGB4 (Section VI-B) involves
combined bending and membrane action. Results showed that even with a coarse mesh, solutions were of similar accuracy to
benchmark results. With adequate meshing, results were almost exactly same as the closed form solutions. NLGB5 (Section VI-C)
was again a problem of bending and membrane action, along with bifurcation. The program was able to attain the solution even with
a minimum number of elements (compared to benchmark tests), which demonstrates the efficiency of the solution methods used.
With sufficient number of elements, results very close to the closed form solution were obtained.

VII. CONCLUSION
A nonlinear 2D beam FEA program was successfully set up in Microsoft Excel environment in a computationally efficient manner

-2

-1.7

-1.4

-1.1

-0.8

-0.5

-0.2

0.1

0.4

-2 -1 0 1 2 3

Initial
Configuration

Final
Configuration

Closed
form

solution

8 elements 16 elements

Benchmark
solution

Program
solution

Benchmark
solution

Program
solution

Deformation at midpoint of test, P = 3.190 EI/L2

UA/L -0.440 # -0.432 -0.451 -0.439

VA/L -0.719 # -0.715 -0.725 -0.718

θA/(π/2) -0.444 # -0.440 -0.451 -0.443

Deformation at end of test, P = 22.493 EI/L2

UA/L -1.577 # -1.565 -1.579 -1.575*

VA/L -0.421 # -0.425 -0.420 -0.423*

θA/(π/2) -0.978 # -0.977 -0.979 -0.977*

www.ijraset.com Volume 3 Issue IX, September 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
21

and benchmark tests were conducted. The program was able to solve problems of large bending, combined bending and membrane
action, and problems of bifurcation. Analysis results show that the combination of cubic beam element and CR-TL formulation can
deliver very accurate results, provided that the mesh density is chosen appropriately. It is also demonstrated that Microsoft Excel is
a convenient platform for setting up such nonlinear FEA programs.

VIII. ACKNOWLEDGEMENTS
The author would like to thank Prof. Naresh K. Chandiramani (Indian Institute of Technology Bombay) for introducing him to
computer programming in engineering, and Manu Nair (Operations Engineer, SapuraKencana Sdn Bhd, Malaysia) for proof reading
this article and providing valuable suggestions.

REFERENCES
[1] Lages E.N., Paulino G.H., Menezes I.F.M. and Silva R.R., Nonlinear Finite Element Analysis using an Object-Oriented Philosophy – Application to Beam

Elements and to the Cosserat Continuum, Engineering with Computers , 15, 1999, 73-89
[2] McKenna F., Scott M.H., and Fenves G.L., Nonlinear finite-element analysis software architecture using object composition, Journal of Computing in Civil

Engineering, Vol 24, No. 1, January 1,2010
[3] Commend S., Zimmermann T., Object-Oriented Nonlinear Finite Element Programming: a Primer, Advances in Engineering Software 32, 8, 2001, 611-628
[4] Martha L. Z., Junior E. P., An Object-Oriented Framework for Finite Element Programming, WCCM V, Fifth World Congress on Computational Mechanics,

July 7-12, 2002, Vienna, Austria.
[5] M.A.Crisfield, Non-linear Finite Element Analysis of Solids and Structures – Vol 1., John Wiley & Sons Ltd., Chichester, England, 1991.
[6] M.A.Crisfield, Non-linear finite element analysis of solids and structures – Vol 2, Advanced topics, John Wiley & Sons, Chichester, England, 1997
[7] Bathe K.J., Bolourchi S., Large displacement analysis of three-dimensional beam structures, International journal for numerical methods in engineering, vol 14

,1979, 961-986
[8] Mattiasson K. and Samuelsson A., Total and updated Lagrangian forms of the co-rotational finite element formulation in geometrically and materially nonlinear

analysis., Numerical Methods of Nonlinear Problems., Swansea, U. K, 1984, 134-151.
[9] Hsiao K. M., Lin J.Y. and Lin W.Y., A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams.,

Computer methods in Applied Mechanics and Engineering, 169, 1999, 1-18.
[10] Zhang N.W., Tong G.S., A co-rotational updated Lagrangian formulation for a 2D beam element with consideration of the deformed curvature, Journal of

Zheijang University science A, Nov 2008, Vol 9, Issue 11, 1480-1489
[11] Simo J.C., A finite strain beam formulation. The three dimensional dynamic problem: Part 1., Computer methods in Applied Mechanics and Engineering, 49,

1985, 55-70
[12] Simo J.C. and Vu-Quoc L., A three-dimensional finite strain rod model: Part 2: Computational aspects., Computer methods in Applied Mechanics and

Engineering,. 58, 1986, 79-116
[13] Reissner E., On one-dimensional finite-strain beam theory: The plane problem, Journal of Applied Mathematics and Physics (ZAMP), 23,1972, 795-804
[14] Crisifield M.A., A fast incremental/iterative solution procedure that handles “snap-through”,Computers and structures, Vol 13, 1980, 55-62
[15] [15] Ricks E., An incremental approach to the solution of snapping and buckling problems, International Journal of Solids and Structures 15, 1979, 524-551
[16] De Souza R.M., Force-based finite element for large displacement inelastic analysis of frames. PhD thesis, Dept. of Civil and Environmental Engineering, UC

Berkeley, 2000.
[17] Holsgrove S.C., Lyons L.P.R., Benchmark tests for two-dimensional thing beams and axisymmetric shells with geometric non-linearity, March 1989, NAFEMS

Report N4

