

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 8 Issue: IV Month of publication: April 2020 DOI:

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

Structural Analysis and Design of RCC Slab for IRC Class AA Loading

Ruchika Kawade¹, Sandip Dongre²

¹P.G. Student, ²Assistant Professor, Department of Civil Engineering, G. H. Raisoni University, Anjangaon Bari, Maharashtra, India

Abstract: The bridge is a structure that will be built where the canal crosses the main road. Bridge plays an important role in the flow of traffic without interference from crossing the channel and increasing road safety. The design of the bridge must follow the standard design practices mentioned in IRC and are the codes. The selling plate bridges horizontal beams are maintained at each end of the sub-structure units and can be either simply maintained when the beams are only connected through a single gap, or continuous, when the rays are connected through two or more spans. Reinforced concrete bridge of reinforced concrete is designed with the use of Indian Roads (IRC) Bridge code: IRC 21 -1987. The bridge deck is designed to load the IRC class car crawler. Design curves are used to obtain time coefficients in two directions for a columnar plate. Therefore, in the present work the analysis and design shall be carried out for IRC class AA loading, the specification according to code shall be followed. Keywords: Bridge, IRC, class A loading, prestressing & Bridge deck

I. INTRODUCTION

The bridge is a life line of road network, both in urban and rural areas. With the rapid growth of technology, the traditional bridge was replaced by an innovative profitable structural system. One of these solutions is the structural system of PAT, which is the T-beam. The design of the bridge is important as well as a comprehensive approach of structural engineer. As with bridges, the SPAN and Live Load durations are always an important factor. These factors influence the stage of conceptualization of design. The effect of a live load for different spans are varied. For shorter spans, load tracking is regulated when the larger SPAN load wheel is administered. Selection of structural system for SPAN is always a sphere for research. Approved system structures affect factors such as economics and complexity in construction. 24 m SPAN as selected for this study, these two factors are important aspects.

The massive slab of bridges is basically concrete, in which the internal voltage of the appropriate magnitude and distribution is introduced so that emphasizes the result of external loads counteracted to the desired degree. In reinforced concrete members, prestress is usually injected by tensioning steel rebar. The earliest examples of the construction of wooden barrels by force-fitting metal strips and metal tires on wooden wheels indicate that the art of the previous one was emphasized from ancient times. The tensile strength of simple concrete is only part of its compressive strength and the problem in its lack of tensile strength appears to have been an immersion factor in the development of composite material known as 'reinforced concrete '.

The development of early cracks in reinforced concrete due to incompatibilities in the strains of steel and concrete, apparently, the starting point in the development of new material as the use of constant tension in the compression to the material as concrete, which is strong in compression, but weak in tension, increases the apparent strength of the rupture of this material, because the further use of stress should initially negate compressive strength

II. REVIEW OF LITERATURE

Currently, engineering technologies are strong and resistant bridges play an important role for the socio-economic development of the nation. Owners and designers have long recognized the low initial cost, low maintenance needs and a long life span of concrete bridges. This growth is very fast, not only for bridges in short range spans, but for long spans exceeding the length that is here, therefore, was almost the exclusive domain of structural steel. A lot of the bridge designers are surprised to find that prefabricated, pre-stressed bridges are usually lower in the first value than all other types of bridges combined with savings in service, prefabricated bridges offer the highest economy. The system of prefabricated cities has offered two main advantages: it is economical and provides a minimum downtime for the construction (G. Krishna et al., 2015).

There are various studies that have been undertaken to perform (RC) box bridges in the previous with a variety of load combinations. Analysis and Development (RC) bridges box is a different assignment. The box bridge consists of the upper plate, the bottom (the raft) of the plate, two exterior walls. Easy to construct do not need any complex foundation.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 8 Issue IV Apr 2020- Available at www.ijraset.com

Research contract using frame design – Work RC BOX BRIDGE, like 2D and 3D analysis in various load combinations, SPAN/height proportions. Interaction of soil in which B M & S F expands without soil interaction in comparison with the method of soil interaction, method of effective width, moment of distribution of method and genetic method of algorithm is used. It is parallel and comparable to a pillow and without pillows on the box bridge with a pillow of over B M & S F occurred compared to without pillows (MD. Salman Apacabani et al. 2019).

III. MODELING

The modeling is carried out by the CSI Bridge software and the procedure adopted includes some of the following parts.

Fig.1: Preferences for IRC Class A loading

Fig. 3: Design preference for IRC Bridge

The modeling is carried out and the analysis is done CSI Bridge software, the analysis is carried out using IRC code.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 8 Issue IV Apr 2020- Available at www.ijraset.com

IV. RESULTS

The following results are obtained in terms of forces and stresses, they are presented below.

Fig.4: Resultant Forces

Bridge Super Design - Design Result Status

<u>File View Edit Format-Filter-Sort Select Options</u>

Units:	As	Noted
Cillion .		

	DecDecName	BridgeObi	BridgeCut	Station	Location	BridgeSect	Statue	Месезде
	Deskeyname	Text	Unitless	m	Text	Text	Unitless	Text
•	Strength-PC	BOBJ1	1	0	After	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	2	2.5	Before	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	3	2.5	After	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	4	5	Before	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	5	5	After	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	6	7.5	Before	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	7	7.5	After	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	8	10	Before	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	9	10	After	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	10	12.5	Before	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	11	12.5	After	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	12	15	Before	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	13	15	After	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	14	17.275	Before	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	15	17.275	After	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	16	19.55	Before	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	17	19.55	After	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	18	20	Before	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	19	20	After	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	20	20.45	Before	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	21	20.45	After	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	22	22.725	Before	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	23	22.725	After	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	24	25	Before	All Girders	0	Design was performed and results
	Strength-PC	BOBJ1	25	25	After	All Girders	0	Design was performed and results

Fig.5: Design parameters

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

Volume 8 Issue IV Apr 2020- Available at www.ijraset.com

o ×

_

Bridge Super Design IRC-112-2011 12 - PCCompFlexure-Check

File	<u>View</u> <u>E</u> dit	Format-Filte	r-Sort Select	Options													
Units	As Noted											Bridge Super	Design IRC-112	-2011 12 - PCCd	mpFlexure-Che	ck	~
	DesReqName	BridgeObj Text	Station m	Location Text	Girder Text	GirderDist m	ResistPos KN-m	DemandMax	ComboMax Text	DSetMax Text	ResistNeg KN-m	DemandMin	ComboMin Text	DSetMin Text	LLDFactM Unitless	DepthGirder	CG ^
•	Strength-PC	BOBJ1	0	After	Left Exterior Girder	0	2626.082	512.7654	STRB_L-4	DSet-4	683.2059	-549.4836	STRB_L-1	DSet-1	1	1.0912	
	Strength-PC	BOBJ1	0	After	Interior Girder 1	0	2672.1059	227.8417	STRB_L-2	DSet-2	683.2059	-246.449	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	0	After	Interior Girder 2	0	2672.1059	229.0175	STRB_L-2	DSet-2	683.2059	-246.7967	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	0	After	Right Exterior Girder	0	2626.082	522.089	STRB_L-4	DSet-4	683.2059	-535.8702	STRB_L-1	DSet-1	1	1.0912	
	Strength-PC	BOBJ1	2.5	Before	Left Exterior Girder	2.5	3321.3197	904.8247	STRB_L-2	DSet-2	142.2604	8.7732	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	2.5	Before	Interior Girder 1	2.5	3367.3436	930.1425	STRB_L-2	DSet-2	142.2604	50.3728	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	2.5	Before	Interior Girder 2	2.5	3367.3436	932.3171	STRB_L-2	DSet-2	142.2604	53.0728	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	2.5	Before	Right Exterior Girder	2.5	3321.3197	913.7087	STRB_L-2	DSet-2	142.2604	13.0914	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	2.5	After	Left Exterior Girder	2.5	3321.3197	876.1297	STRB_L-2	DSet-2	142.2604	-9.3109	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	2.5	After	Interior Girder 1	2.5	3367.3436	899.3471	STRB_L-2	DSet-2	142 2604	48.4228	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	2.5	After	Interior Girder 2	2.5	3367.3436	901.5177	STRB_L-2	DSet-2	142.2604	51.254	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	2.5	After	Right Exterior Girder	2.5	3321.3197	885.1233	STRB_L-2	DSet-2	142.2604	-4.9644	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	5	Before	Left Exterior Girder	5	3668.9386	1520.8188	STRB_L-2	DSet-2	-27.4427	70.3186	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	5	Before	Interior Girder 1	5	3714.9625	1464.3679	STRB_L-2	DSet-2	-27.4427	91.4959	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	5	Before	Interior Girder 2	5	3714.9625	1466.6979	STRB_L-2	DSet-2	-27.4427	93.3088	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	5	Before	Right Exterior Girder	5	3668.9386	1527.8323	STRB_L-2	DSet-2	-27.4427	75.9665	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	5	After	Left Exterior Girder	5	3668.9386	1475.5116	STRB_L-2	DSet-2	-27.4427	67.3652	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	5	After	Interior Girder 1	5	3714.9625	1440.4995	STRB_L-2	DSet-2	-27.4427	90.943	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	5	After	Interior Girder 2	5	3714.9625	1442.948	STRB_L-2	DSet-2	-27.4427	92.8134	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	5	After	Right Exterior Girder	5	3668.9386	1482.4504	STRB_L-2	DSet-2	-27.4427	73.0035	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	7.5	Before	Left Exterior Girder	7.5	3668.9386	1914.8121	STRB_L-2	DSet-2	-27.4427	95.9229	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	7.5	Before	Interior Girder 1	7.5	3714.9625	1878.5917	STRB_L-2	DSet-2	-27.4427	106.2682	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	7.5	Before	Interior Girder 2	7.5	3714.9625	1881.2191	STRB_L-2	DSet-2	-27.4427	107.5707	STRB_L-3	DSet-3	1	1.0912	
	Strength-PC	BOBJ1	7.5	Before	Right Exterior Girder	7.5	3668.9386	1919.424	STRB_L-2	DSet-2	-27.4427	99.9939	STRB_L-3	DSet-3	1	1.0912	
													A	ctivate W	lindows.		~

Fig. 6: Maximum and Moments on the Girders

		Join Select	options													
s Noted											Bridge	Super Design IR	C-112-2011 12 -	PCCompFlexure	-Check	~
CGFibTop	CGFibBot	ASlabTriTop	ThSlabTop	WSlabTrib	ThBeamTop	WBeamTop	WebWidth	WebHeight	ThBeamBot	WBeamBot	AreaRebTop	AreaRebBot	AreaPTTop m2	AreaPTBot m2	AlphaCC	Gamma /
0.272596	0.818604	0.69845	0.305	2.29	0.15875	0.3048	0.1524	0.338138	0.214313	0,4064	0	0	0.002581	0.002581	0.85	
0.251939	0.839261	0.93025	0.305	3.05	0.15875	0.3048	0.1524	0.338138	0.214313	0.4064	0	0	0.002581	0.002581	0.85	
0.251939	0.839261	0.93025	0.305	3.05	0.15875	0.3048	0.1524	0.338138	0.214313	0.4064	0	0	0.002581	0.002581	0.85	
0.272596	0.818604	0.69845	0.305	2.29	0.15875	0.3048	0.1524	0.338138	0.214312	0.4064	0	0	0.002581	0.002581	0.85	
0.272596	0.818604	0.69845	0.305	2.29	0.15875	0.3048	0.1524	0.338138	0.214313	0.4064	0	0	0.002581	0.002581	0.85	
0.251939	0.839261	0.93025	0.305	3.05	0.15875	0.3048	0.1524	0.338138	0.214313	0.4064	0	0	0.002581	0.002581	0.85	
0.251939	0.839261	0.93025	0.305	3.05	0.15875	0.3048	0.1524	0.338138	0.214313	0.4064	0	0	0.002581	0.002581	0.85	
0.272596	0.818604	0.69845	0.305	2.29	0.15875	0.3048	0.1524	0.338138	0.214312	0.4064	0	0	0.002581	0.002581	0.85	
0.272596	0.818604	0.69845	0.305	2.29	0.15875	0.3048	0.1524	0.338138	0.214313	0.4064	0	0	0.002581	0.002581	0.85	
0.251939	0.839261	0.93025	0.305	3.05	0.15875	0.3048	0.1524	0.338138	0.214313	0.4064	0	0	0.002581	0.002581	0.85	
0.251939	0.839261	0.93025	0.305	3.05	0.15875	0.3048	0.1524	0.338138	0.214313	0.4064	0	0	0.002581	0.002581	0.85	
0.272596	0.818604	0.69845	0.305	2.29	0.15875	0.3048	0.1524	0.338138	0.214312	0.4064	0	0	0.002581	0.002581	0.85	
0.272596	0.818604	0.69845	0.305	2.29	0.15875	0.3048	0.1524	0.338138	0.214313	0.4064	0	0	0.002581	0.002581	0.85	
0.251939	0.839261	0.93025	0.305	3.05	0.15875	0.3048	0.1524	0.338138	0.214313	0.4064	0	0	0.002581	0.002581	0.85	
0.251939	0.839261	0.93025	0.305	3.05	0.15875	0.3048	0.1524	0.338138	0.214313	0.4064	0	0	0.002581	0.002581	0.85	
0.272596	0.818604	0.69845	0.305	2.29	0.15875	0.3048	0.1524	0.338138	0.214312	0.4064	0	0	0.002581	0.002581	0.85	
0.272596	0.818604	0.69845	0.305	2.29	0.15875	0.3048	0.1524	0.338138	0.214313	0.4064	0	0	0.002581	0.002581	0.85	
0.251939	0.839261	0.93025	0.305	3.05	0.15875	0.3048	0.1524	0.338138	0.214313	0.4064	0	0	0.002581	0.002581	0.85	
0.251939	0.839261	0.93025	0.305	3.05	0.15875	0.3048	0.1524	0.338138	0.214313	0.4064	0	0	0.002581	0.002581	0.85	
0.272596	0.818604	0.69845	0.305	2.29	0.15875	0.3048	0.1524	0.338138	0.214312	0.4064	0	0	0.002581	0.002581	0.85	
0.272596	0.818604	0.69845	0.305	2.29	0.15875	0.3048	0.1524	0.338138	0.214313	0.4064	0	0	0.002581	0.002581	0.85	
0.251939	0.839261	0.93025	0.305	3.05	0.15875	0.3048	0.1524	0.338138	0.214313	0.4064	0	0	0.002581	0.002581	0.85	
0.251939	0.839261	0.93025	0.305	3.05	0.15875	0.3048	0.1524	0.338138	0.214313	0.4064	0	0	0.002581	0.002581	0.85	
0.272596	0.818604	0.69845	0.305	2.29	0.15875	0.3048	0.1524	0.338138	0.214312	0.4064	0	0	0.002581	0.002581	0.85	

Fig. 7: Thickness Obtained as per the Design

s No	ted											Bridge S	uper Design IRC	-112-2011 12 - F	PCCompFlexure-CI	teck	
	fcdSlab KN/m2	FactEtaS Unitless	FactLambdaS	EpsCU3S Unitless	SammaRebar	fydLRebar KN/m2	GammaPT Unitless	fpd KN/m2	PrestrainPT	TSectForPos	TSectForNeg	xDistForPos	xDistForNeg	xLamdaPos m	xLambdaNeg	xLocPos Text	_
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	Yes	0.12176	0.52244	0.09741	0.41795	Within Web	
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	Yes	0.09142	0.52244	0.07314	0.41795	Within Web	
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	Yes	0.09142	0.52244	0.07314	0.41795	Within Web	
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	Yes	0.12176	0.52244	0.09741	0.41795	Within Web	
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	Yes	0.12176	0.35279	0.09741	0.28223	Within Web	
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	Yes	0.09142	0.35279	0.07314	0.28223	Within Web	
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	Yes	0.09142	0.35279	0.07314	0.28223	Within Web	
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	Yes	0.12176	0.35279	0.09741	0.28223	Within Web	
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	Yes	0.12176	0.35279	0.09741	0.28223	Within Web	
35	17000	1	0.8	0.0035	1.15	360869 57	1.15	1469482 75	0.005116	No	Yes	0 09142	0 35279	0.07314	0 28223	Within Web	
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	Yes	0.09142	0.35279	0.07314	0.28223	Within Web	
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	Yes	0.12176	0.35279	0.09741	0.28223	Within Web	
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	No	0.12176	0.24623	0.09741	0.19698		
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	No	0.09142	0.24623	0.07314	0.19698		
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	No	0.09142	0.24623	0.07314	0.19698		
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	No	0.12176	0.24623	0.09741	0.19698		
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	No	0.12176	0.24623	0.09741	0.19698		
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	No	0.09142	0.24623	0.07314	0.19698		
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	No	0.09142	0.24623	0.07314	0.19698		
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	No	0.12176	0.24623	0.09741	0.19698		
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	No	0.12176	0.24623	0.09741	0.19698		
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	No	0.09142	0.24623	0.07314	0.19698		
35	17000	1	0.8	0.0035	1.15	360869.57	1.15	1469482.75	0.005116	No	No	0.09142	0.24623	0.07314	0.19698		
20	17000		0.8	0.0035	1 15	360869 57	1 15	1469482 75	0.005116	No	No	0 12176	0.24623	0.09741	0 19698		

Fig.8: Area of Rebars for Bridge

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

Volume 8 Issue IV Apr 2020- Available at www.ijraset.com

o ×

B Bridge Super Design IRC-112-2011 12a - PCCompFlexure-Design File View Edit Format-Filter-Sort Select Options

DesReqName	BridgeObj Text	Station	Location Text	Girder Text	GirderDist m	MuPos KN-m	MuNeg KN-m	CoverBot	CoverTop	xLocPosReq Text	xLocNegReq Text	epsPosReq Unitless	epsNegReq Unitless	ARebBotReq	ARel
Strength-PC	BOBJ1	0	After	Left Exterior Girder	0	512.7654	-549.4836	0.05	0.05	Within Composite Slab	Within Bottom Flange	0.001569	0.001569	0.001628	
Strength-PC	BOBJ1	0	After	Interior Girder 1	0	227.8417	-246.449	0.05	0.05	Within Composite Slab	Within Bottom Flange	0.001569	0.001569	0.000687	
Strength-PC	BOBJ1	0	After	Interior Girder 2	0	229.0175	-246.7967	0.05	0.05	Within Composite Slab	Within Bottom Flange	0.001569	0.001569	0.00069	
Strength-PC	BOBJ1	0	After	Right Exterior Girder	0	522.089	-535.8702	0.05	0.05	Within Composite Slab	Within Bottom Flange	0.001569	0.001569	0.001661	
Strength-PC	BOBJ1	2.5	Before	Left Exterior Girder	2.5	904.8247	8.7732	0.05	0.05	Within Composite Slab	N/A	0.001569	0	0.003143	
Strength-PC	BOBJ1	2.5	Before	Interior Girder 1	2.5	930.1425	50.3728	0.05	0.05	Within Composite Slab	N/A	0.001569	0	0.003253	
Strength-PC	BOBJ1	2.5	Before	Interior Girder 2	2.5	932.3171	53.0728	0.05	0.05	Within Composite Slab	N/A	0.001569	0	0.003262	
Strength-PC	BOBJ1	2.5	Before	Right Exterior Girder	2.5	913.7087	13.0914	0.05	0.05	Within Composite Slab	N/A	0.001569	0	0.003181	
Strength-PC	BOBJ1	2.5	After	Left Exterior Girder	2.5	876.1297	-9.3109	0.05	0.05	Within Composite Slab	Within Bottom Flange	0.001569	0.001569	0.00302	
Strength-PC	BOBJ1	2.5	After	Interior Girder 1	2.5	899.3471	48.4228	0.05	0.05	Within Composite Slab	N/A	0.001569	0	0.003119	
Strength-PC	BOBJ1	2.5	After	Interior Girder 2	2.5	901.5177	51.254	0.05	0.05	Within Composite Slab	N/A	0.001569	0	0.003129	
Strength-PC	BOBJ1	2.5	After	Right Exterior Girder	2.5	885.1233	-4.9644	0.05	0.05	Within Composite Slab	Within Bottom Flange	0.001569	0.001569	0.003059	
Strength-PC	BOBJ1	5	Before	Left Exterior Girder	5	1520.8188	70.3186	0.05	0.05	Concrete fails in co	N/A	0	0	0	
Strength-PC	BOBJ1	5	Before	Interior Girder 1	5	1464.3679	91.4959	0.05	0.05	Concrete fails in co	N/A	0	0	0	
Strength-PC	BOBJ1	5	Before	Interior Girder 2	5	1466.6979	93.3088	0.05	0.05	Concrete fails in co	N/A	0	0	0	
Strength-PC	BOBJ1	5	Before	Right Exterior Girder	5	1527.8323	75.9665	0.05	0.05	Concrete fails in co	N/A	0	0	0	
Strength-PC	BOBJ1	5	After	Left Exterior Girder	5	1475.5116	67.3652	0.05	0.05	Concrete fails in co	N/A	0	0	0	
Strength-PC	BOBJ1	5	After	Interior Girder 1	5	1440.4995	90.943	0.05	0.05	Concrete fails in co	N/A	0	0	0	
Strength-PC	BOBJ1	5	After	Interior Girder 2	5	1442.948	92.8134	0.05	0.05	Concrete fails in co	N/A	0	0	0	
Strength-PC	BOBJ1	5	After	Right Exterior Girder	5	1482.4504	73.0035	0.05	0.05	Concrete fails in co	N/A	0	0	0	
Strength-PC	BOBJ1	7.5	Before	Left Exterior Girder	7.5	1914.8121	95.9229	0.05	0.05	Concrete fails in co	N/A	0	0	0	
Strength-PC	BOBJ1	7.5	Before	Interior Girder 1	7.5	1878.5917	106.2682	0.05	0.05	Concrete fails in co	N/A	0	0	0	
Strength-PC	BOBJ1	7.5	Before	Interior Girder 2	7.5	1881.2191	107.5707	0.05	0.05	Concrete fails in co	N/A	0	0	0	
Strength-PC	BOBJ1	7.5	Before	Right Exterior Girder	7.5	1919.424	99.9939	0.05	0.05	Concrete fails in co	N/A	0	0	0	

Fig.9: Moments at different Locations

s Noted										Br	idge Super Design IRC-112	2-2011 12a - PCC	ompFlexure-Des	lign	~
DesReqName	BridgeObj Text	Station	Location Text	Girder Text	GirderDist m	MuPos KN-m	MuNeg KN-m	CoverBot m	CoverTop m	xLocPosReq Text	xLocNegReq Text	epsPosReq Unitless	epsNegReq Unitless	ARebBotReq	ARel ^
Strength-PC	BOBJ1	10	Before	Right Exterior Girder	10	2056.0009	88.1372	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	10	After	Left Exterior Girder	10	2048.3209	84.0494	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	10	After	Interior Girder 1	10	1873.3062	114.2454	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	10	After	Interior Girder 2	10	1876.4665	114.3086	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	10	After	Right Exterior Girder	10	2050.954	87.1027	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	12.5	Before	Left Exterior Girder	12.5	1943.3717	68.0386	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	12.5	Before	Interior Girder 1	12.5	1856.4362	81.9125	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	12.5	Before	Interior Girder 2	12.5	1859.3082	81.914	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	12.5	Before	Right Exterior Girder	12.5	1943.8867	70.1367	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	12.5	After	Left Exterior Girder	12.5	1966 2206	70 2392	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	12.5	After	Interior Girder 1	12.5	1876.167	83.9431	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	12.5	After	Interior Girder 2	12.5	1879.0822	83.9364	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	12.5	After	Right Exterior Girder	12.5	1966.8939	72.4107	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	15	Before	Left Exterior Girder	15	1564.3881	11.5153	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	15	Before	Interior Girder 1	15	1443.1579	41.6853	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	15	Before	Interior Girder 2	15	1446.1802	41.6781	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	15	Before	Right Exterior Girder	15	1563.2124	11.8292	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	15	After	Left Exterior Girder	15	1600.9321	11.4953	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	15	After	Interior Girder 1	15	1462.6057	44.0286	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	15	After	Interior Girder 2	15	1465.9759	43.9919	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	15	After	Right Exterior Girder	15	1599.702	12.2989	0.05	0.05	Concrete fails in co.	N/A	0	0	0	
Strength-PC	BOBJ1	17.275	Before	Left Exterior Girder	17.275	946.2057	-29.7209	0.05	0.05	Within Composite Sla	Within Bottom Flange	0.001569	0.001569	0.003324	
Strength-PC	BOBJ1	17.275	Before	Interior Girder 1	17.275	970.6333	-38.2829	0.05	0.05	Within Composite Sla	Within Bottom Flange	0.001569	0.001569	0.003433	
Strength-PC	BOBJ1	17.275	Before	Interior Girder 2	17.275	971.375	-38.2171	0.05	0.05	Within Composite Sla	b Within Bottom Flange	0.001569	0.001569	0.003436	
	00011	17.075			17.075			0.05	0.05		A	trivate-14	indaws.		

Fig.10 Moments at different location

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 8 Issue IV Apr 2020- Available at www.ijraset.com

Ø × B CSiBridge v22.0.0 Evaluation 64-bit - CSI-Bridge-AA loading ■ 2 0 0 ■ = X Bridge Object Response Display 2 Home Layout File C Show Tabular Display of Current Plot D+L D+L Units Select Bridge Object Bridge Model Type BOBJ1 Area Object Show Table... Export To Exc KN. m. C Default DC-STR-I Load Combinations Select Display Component Design/Rating Resultant F11 Diagram (DEAD) Design/Rating Result Types Requests Strength-PCComp Shear ▼ X Envelope Max Left Exterior Girder **Results For** D/C Limit Controlling Demand/Capacity Ratio * Show Selected Girde Bridge Response Plot BOBJ1 - Left Exterior Girder, Design Request: Strength-PCComp Shear (IRC-2011, Shear Check) Controlling Demand/Capacity Ratio: Max = 0.8538 Min = 0.08 Mouse Pointer Location Snap Options Save Named Set Distance From Start of Bridge Object v 32.3106 Bridge Cut Snap to Computed Response Points Show Cut Response At Current Location Refresh Activate Windows Distance Options Go to Set tings to activate Windo Layout Line O Girder Length Fig. 12: Shear Check according to IRC B CSiBridge v22.0.0 Evaluation 64-bit - CSI-Bridge-AA loading Ø B 9 9 B = Bridge Object Response Display × Home Layout 2 File C Select Bridge Object Show Tabular Display of Current Plot Bridge Model Type linits 바 Area Object Show Table... Export To Excel... KN, m, C Add BOBJ1 DC-STR-I Default oad Combinatio Select Display Component Load Case/Load Combo Resultant F11 Diagram (DEAD) Result Types Stress Case/Combo DEAD Results For Left Exterior Beam ~ Response Longitudinal Stress - Top Left (S11) * Show Selected Girder Bridge Response Plot BOBJ1 - Left Exterior Beam, Load Case: DEAD 10000 ongitudinal Stress - Top Left (S11): Max = 8718 1795 Min = -8166.24 (KN/m2

Snap Options

Snap to Co

Distance Options
Other
Layout Line

Girder Length

Save Named Set

Refresh Activate Windows

The above analysis and design is obtained for the IRC class A loading bridge, the forces and stresses obtained are presented diagrammatically.

Show Cu

Bridge Cut

V. CONCLUSION

The following conclusions can be drawn from the above study:

A. The CSI Bridge software is user friendly for the Bridge design.

Distance From Start of Bridge Object v 18.3603

Response At Current Location

- B. The Bridge through prestressing construction is possible
- C. The parabolic shape stresses are obtained through this analysis

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 8 Issue IV Apr 2020- Available at www.ijraset.com

REFERENCES

- P. Chanakya & CH. Damodhar Naidu, "Design Aids of RCC Box Culvert by using Staad Pro", International Journal for Research in Applied Science & Engineering Technology (IJRASET), Volume 6 Issue XI, Nov 2018
- [2] Shubham Kesarwani, Rohit Rai & Ravi P. Srivastava, "A Review Paper on Analysis of T-Beam Along with Deck Slab by Courbon's Method", IJSRD -International Journal for Scientific Research & Development, Vol. 6, Issue 04, 2018.
- [3] Sudarshan Prabhakar Patil & Kameshwar Rao Tallapragada, "Analysis and Design of R.C.C. T-girder Bridge under IRC Class AA and Class A Loading", International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE), Vol 2, Issue 3, March 2017.
- [4] Sudip Jha, Cherukupally Rajesh & P.Srilakshmi, "Comparative Study of RCC Slab Bridge by Working Stress (IRC: 21-2000) and Limit State (IRC: 112-2011)", International Journal & Magazine of Engineering, Technology, Management and Research, Volume No: 2 (2015), Issue No: 8.
- [5] Shivanand Tenagi & R. Shreedhar, "Comparative Study of Slab Culvert Design using IRC 112:2011 and IRC 21:2000", International Journal for Scientific Research & Development, Vol. 3, Issue 05, 2015.
- [6] Y. Kamala Raju, R.Mehar Babu, & Mohd. Husssain, "Reinforced Cement Concrete Bridge Deck Design of a Flyover with Analysis for Dynamic Response Due To Moving Loads for Urban Development in Transportation Systems - A Case Study", International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE), Vol 3, Issue 2, February 2018.
- [7] Md. Salman Akbani & N. H. Pitale, "Review Paper on Analysis and Design of RCC Box Bridge", International Journal for Research in Applied Science & Engineering Technology, Volume 7 Issue III, Mar 2019.
- [8] G. Krishna, G.RamaKrishna & Dr. M. Kameswara Rao, "A Comparative Design of Reinforced Concrete Solid Slab Bridge for Different Spans", International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 8, August 2015.
- B. Sravanthi, G.RamaKrishna & Dr. M. Kameswara Rao, "A Comparative Design of One Cell and Twin Cell RCC Box Type Minor Bridge", International Journal for Scientific Research & Development, Vol. 3, Issue 06, 2015
- [10] Y. Vinod Kumar & Dr. Chava Srinivas, "analysis and design of box culvert by using computational methods", International Journal of Engineering & Science Research, IJESR, July 2015, Vol-5, Issue-7, 850-861.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)