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Abstract: In the present study we present an innovative approach towards countering the problem of partial occlusion in face
recognition scenario. The partial occlusion can be caused by various objects such as scarfs, sunglasses etc., and its effects are
confounding in the performances of the recognition rates. The framework tends to mathematically model the curvature and
other essential features of the face such as micro-expression and the curves of the facial regions. This, significantly enhances
the probability of matching the parent image to that of the occlude image. The proposed algorithm is tested over Extended Yale B
& CMU PIE standardized datasets.
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l. INTRODUCTION

The past decades have essed the emergence of the semi-automated facial recognition system which is widely used in surveillance
scenarios such as criminal identification or in other international security agencies. But the problem with the method is that it
requires a fair amount of manual intervention for the localization of the facial features and thereupon the algorithms are required to
find the match based on its closeness in appearance with the other images in the database which is primarily based on feature
extraction and information discrimination. Based on the type of classifiers used the face recognition systems for occlude images are
classified as:

Geometric Feature Based Method

Template Based Method

Correlation Based Method

Matching Pursuit Based Method

Singular VValue Decomposition Based Method
Dynamic Link Matching Method

Other Learning Based Recognition Methods

@MMoUO®my

Since, such methods has its own pros and cons and are often drop in recognition rates for occlude images have been reported [1,2].
Among the best known approaches for face recognition, Principal Component Analysis (PCA) is considered one of the techniques
with better results and has been object of much interest in the research domain of face recognition [3,4]. PCA involves the
recognition framework based on the representation of the facial images by using eigenfaces [4-16]. The principal logic behind PCA
method is to derive sets of orthogonal vectors (also called eigenfaces) which optimally represent the data distribution in form of the
root mean square (rms) sense [17-25]. Therefore, in the study we presented a learning based approach independent of the variations
like that of varying light illumination, pose estimation and the occlusion problem. The technique proposed in this paper is
morphologically modeled extension of the PCA approach where several subsets of images are created through logical networks. In
each subset, the images used in the training and recognition stages are masked in those regions where significant modifications are
expected to occur as a consequence of occlusion or expression change.

1. METHODOLOGY

A. Experimental Setup
The proposed algorithm is prototyped over MATLAB R2012a under Windows platform, with hardware specifications of Intel’s
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third generation 8-core microprocessor, 2GB RAM giving the clocking speed of 2.7 GHz. The standardized databases used in the
study CMU PIE facial image database (table 1) as test images [26,27]. The images in the study consist of two types namely the one
occluded by glasses or sunglasses and the one occluded by hats or disguise.

Table.1. List of database used in the recognition test.

Database Subjects Images Per Person | Occlusion Type Total
Extended Yale B 40 4 Hats/Disguise 160
CMU PIE 70 7 Glass/Sunglass 490

B. Methodology: Algorithm For Encoding Facial Features From Occluded Images

The idea relies over the idea to map the topological features from the given facial image and thereby coding it in logical sequence
with the help of cascaded neural network; since in previous study such attempt has already been quite successful in decoding the
face recognition patterns involved with human brain and then training the neural nets to mimic such process [28]. Therefore, the
underlying pre-processing steps to reduce the effects posed any poor or uncontrolled lighting environment. The proposed pre-
processing steps begin with the color transformation of the given facial image in order to normalize the light illumination field. The
latter steps dynamically adjust the contrast of the image by breaking down the wavelets in logical association with spatial colorized
pixel field. This ensures the optimization of the reflectance field derivative from the pixel values. Hence, making it easy to perform
computational operations over optimized values. Such that, the given RGB standard image is to be normalized into rg scheme by
using the following pre-processing algorithm:

Algorithm: Pre-Processing Algorithm

Input: m < n RGB standard Image

Where, m & n are the row & column of the given image.
Output: rg normalized color scheme

Loop: foritom

Loop: for j:n /IRGB normalization to rg scheme
_ R
"SRG+ B)
_ G
9 =R+ G+B)
end
end
Check & Segment:
if vy < X P(r1,9:5)) /ITo adjust contrast
{
P.in = P(skin|rg, N) //for sampling skin texture
else

Ppackgrouna = (background|rg,y,,) /ifor sampling background light
/lillumination field

¥

Where, the value M represents the model of skin color, which is embarked as low intensity pixels after the pre-processing. y,, &
2u arethe mean & covariance of the pixel distribution based on intensities in rg color scheme after pre-processing.
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Figure.1: The sample results of each pre-processing steps and histogram Plot of various sections of the image after pre-processing
(A) Intermediary steps of Pre-processing and final output of pre-processing (B) Shows that of the distribution of sampled skin pixels
P, for the normalized rg-color scheme (C) Shows that of the distribution of sampled non-skin pixels or other background
extracted pixels in pixel set Pygckgrouna-

Now, that we have the segmented pixels sets; it is required to pass the segmented pixels from an adaptive algorithm to encode facial
features & its orientation for both high & low resolution images. Therefore, we use the cascaded neural networks for the same. To
form an associative pattern between the neighboring sets of pixel blocks the cascaded coding of training sets, this requires three
types of vectors:

(&) The displacement vector field with the bit rate of

i
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(b) Bit rate corresponding to the sequencing connectomes of information tree.
(c) The error rate in learningE (i, j).

Given the segmented data sets derivable from the above algorithm P, in form of each rg-color scheme is given as: (x;, 1),
(22, ¥2)s «-vy (1, V1)E Pain > [1,0]. Let v;eV be the set of displacement vectors for each of the neighboring nodes n;. Such nodes
represent the positioning of the feature sets. Therefore, in order to sequence the features of the facial image from the reconstructed
rg-color scheme we use the following Pyramidal Section Algorithm (PSA) algorithm; for which its face recognition process is
depicted in figure 2 below.

Algorithm: Pyramidal Section Algorithm (PSA)
Input: (xq,¥1), (2, ¥2)s -+, (%, V)€ Pogin
Output: Prgce (i, /)

Step 1: while | <min (XX, D(v;,n;)) /D is the displacement vector
Step 2: Evaluate the feasible value of target nodes T;q,.ge; :
N
Ttarget = Z D(‘UL-, ni)
i=1
Step 3: Create target vectors for feasible neighboring nodes:

Loop: for1lton;

N
Z T(‘UL-, ni) < Ttarget
i=1

Step 4: Using Lagrange multiplier A for the activation function of the cascaded neural network [15]:

forltom
forlton
m n mn
CCif) =) Y sgn(D(vun) + AT n)) + ¥ EGij)
i=1 j=1 ij
”T(vilni) - Ttarget”
E(i,j) = //Normalized error
@.1) D@, )]
end
end
end for loop
end while loop

Step 5: END PROCESS
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Figure 2: (A) The sample results of the PSA algorithm showing the recognized IDs of the test images with occluded sub spaces
during the training period of the cascaded neural network. (B) Sample images from the four test categories. (C) Images from the
category of disguise and sunglasses which fails in the PSA cascading network in aligning with the trained datasets resulted in
inappropriate classification. (D) Results of the formation of associatively cascaded logical blocks with the curvature of the face in
the given facial images with different positioning of light source.

1. CONCLUSION
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Figure.3: The comparison plot of the proposed PSA algorithm with that of the other principal cited methods for solving occlusion
problem in the literature.

As shown in the figure 3 above the plot depicts the comparison of the several methods of face recognition relatively with the
proposed PSA algorithm. The result is plotted between the two results i.e., false recognition rate & false acceptance rate. Here, the
false acceptance rate represents the matching points chosen by the algorithm to be used for matching whereas false recognition rate
is the matching points which are matched with the criteria chosen with the designated algorithms. As can be concurred from the
above plot the error rates has been minimal from rest of the methods as only unique match points is selected by the algorithm &
latter used it to render over the other similar images which gives the higher correct match acceptance rate in nominal rate. This,
detection method gives us an advantage over the present existing methods which indulges in pointless computation & matching of
the pixel sets with numerous data entries. Our method has reduced this redundancy to a higher limit & is promises to be useful in
industrial applications. The issues with the other methods are that they heavily relies on the visual cues for face detection and thus
are time consuming. This method proposes a scalable algorithm with cascaded neural network for logically associative defining
nodes of the facial feature sets & thus the searching of match properties is reduced to a very fine scale. Also, for lower resolution
images PSA works fine from coarse to fine scales of visual cues in context of skin color and textures. Recognition of facial images
from different plane shall be pursued in the near future hat will add depth to the current PSA algorithm.

Table 2: Recognition rates performance of the proposed algorithm on real database for all categories of the significant occlusion
types.

Database Type Normal Glasses Sunglasses Hats Disguises
Extended Yale B 91.5 90.3 83.4 59.2 42.3
CMU PIE 99.2 98.5 76.8 455 39.5

As shown within the table 2 above; the bestowed rule has effectively tries to address the matter of partly occluded faces within the
four completely different classes and sequent variations. The results have shown that the performance of the face recognition rule is
hyperbolic by the effective utilization of the cascaded neural networks. the most advantage with this methodology is that the
machine price of process is considerably reduced as compared to the opposite strategies and thereby giving a minimal set of errors
in false recognition rate, although the rule fails at places wherever quite fifty six of the facial region is roofed or stopped-up. this
methodology can create real implementation of the face recognition system for viable.
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