

8 VI June 2020

http://doi.org/10.22214/ijraset.2020.6172

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue VI June 2020- Available at www.ijraset.com

 1066 ©IJRASET: All Rights are Reserved

Infra for Automated Hypervisor Environment Set Up
Rahul Singh Kushwaha1, S. G. Raghavendra Prasad2

1Information Science and Engineering, R.V. College of Engineering, Bengaluru, Karnataka, India
2Assistant Professor Information Science and Engineering R.V. College of Engineering, Bengaluru, Karnataka, India

Abstract: There is a lot of requirement where we need to set up the hypervisor environment, like a different flavor of the Linux
environment or windows. This setup is needed for better management of the hardware resources, Speeding up the testing of the
hypervisor sensitive software, service as environment for the user, Enabling the automated remote testing of the software.
Infrastructure for automated hypervisor environment set up is and procedure discussing hot to set up the system so the
hypervisor deployment becomes automated and remotely control all the aspect of the deployment. This infra is scalable and can
accommodate any future hypervisor and any future versions, This infra will also be flexible enough to accommodate any new
hardware to the. This infra can be enhanced to have the GUI and queuing mechanism so that is becoming as Environment as
Service infrastructure,
Keywords: RFID (Radio Frequency Identifier), ESXi, KVM, XEN, Hyper-V, QA, HW, DHCP, FTP

I. INTRODUCTION
This framework eliminates the need for different machines for different hypervisors. A single machine can be used to provision any
hypervisor. This frees up HW resources. The framework also abstracts the hypervisor and topology deployment for customer/ QA/
dev personnel. Reliable hypervisor installation and topology creation and switching mechanisms enabling fast feature development
and test. The framework has the intelligence to be ported to any machine. The code can learn the HW information and based on
user input create topology accordingly. And as of now, there is no self-service infrastructure built for on-prem which has led the
engineers to face the same problem again which was faced by the Cloud developers. The framework should be effective, efficient,
and robust with great user experience as it is expected to run all the time and to be able to handle the variable requests. The
framework should also be Scalable because it should be able to incorporate the new hypervisor and its version in the future. The
framework will help the engineer run a selective test with ease and will give the ability to select the test and the hypervisor to run the
test on. This will help all engineer to contribute to infrastructure development and test case

II. SSH SERVICE.
Secure Shell (SSH) is a cryptographic system convention for the working system benefits safely over an unbound system. Normal
applications incorporate remote order line, login, and remote order execution, however, any system administration can be made sure
about with SSH. SSH gives a safe channel over an unbound system in a customer server design, associating an SSH customer
application with an SSH server. The convention particular recognizes two significant forms, alluded to as SSH-1 and SSH-2. The
standard TCP port for SSH is 22. SSH is commonly used to get to Unix-like working frameworks, yet it can likewise be utilized on
Microsoft Windows. Windows 10 uses OpenSSH as its default SSH customer. SSH was structured as a trade for Telnet and unbound
remote shell conventions, for example, the Berkeley rlogin, rsh, and rexec conventions. Those conventions send data, remarkably
passwords, in plaintext, rendering them vulnerable to capture attempt and exposure utilizing bundle analysis.[4] The encryption
utilized by SSH is expected to give classification and honesty of information over an unbound system, for example, the Internet,
despite the fact that records spilled by Edward Snowden show that the National Security Agency can once in a while decode SSH,
permitting them to peruse the substance of SSH meetings. SSH utilizes open key cryptography to verify the remote PC and permit it
to confirm the client, if essential. There are a few different ways to utilize SSH; one is to utilize naturally produced open private
key sets to just encode a system association and afterward use secret word validation to sign on.
Another is to utilize a physically produced open private key pair to play out the confirmation, permitting clients or projects to sign
in without determining a secret word. In this situation, anybody can deliver a coordinating pair of various keys (open and private).
The open key is put on all PCs that must permit access to the proprietor of the coordinating private key (the proprietor stays
discreet). While verification depends on the private key, the key itself is never moved through the system during validation. SSH
just confirms whether a similar individual contribution to the open key additionally possesses the coordinating private key.
In all variants of SSH, it is critical to confirm obscure open keys, for example, partner the open keys with personalities, before
tolerating them as substantial. Tolerating an aggressor's open key without approval will approve an unapproved assailant as a
legitimate client.[1][2][3]

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue VI June 2020- Available at www.ijraset.com

 1067 ©IJRASET: All Rights are Reserved

III. PXE
In registering, the Preboot eXecution Environment (PXE, frequently articulated as pixie) particular portrays a normalized customer
server condition that boots a product get together, recovered from a system, on PXE-empowered customers. On the customer side it
requires just a PXE-fit system interface controller (NIC) and utilizations a little arrangement of industry-standard system
conventions, for example, DHC Since the start of PC systems, there has been a persevering requirement for customer frameworks
which can boot fitting programming pictures, with proper design parameters, both recovered at boot time from at least one system
servers. This objective requires a customer to utilize a lot of pre-boot administrations, in light of industry-standard system
conventions. Also, the Network Bootstrap Program (NBP) which is at first downloaded and run must be fabricated utilizing a
customer firmware layer (at the gadget to be bootstrapped through PXE) giving a piece of equipment autonomous normalized
approach to communicate with the encompassing system booting condition. For this situation, the accessibility and coercion to
guidelines are a key factor required to ensure the system boot process framework interoperability.
One of the primary endeavors in such manner was the Bootstrap Loading utilizing TFTP standard RFC 906, distributed in 1984,
which built up the 1981 distributed Trivial File Transfer Protocol (TFTP) standard RFC 783 to be utilized as the standard
document move convention for bootstrap stacking. It was followed soon after by the Bootstrap Protocol standard RFC 951
(BOOTP), distributed in 1985, which permitted a circle less customer machine to find its IP address, the location of a TFTP server,
and the name of an NBP to be stacked into memory and executed. BOOTP execution challenges, among different reasons, in the
long run, prompted the improvement of the Dynamic Host Configuration Protocol standard RFC 2131 (DHCP) distributed in 1997.
The spearheading TFTP/BOOTP/DHCP approach missed the mark, as, at that point, it didn't characterize the necessary normalized
customer side of the provisioning condition.
The Preboot Execution Environment (PXE) was presented as a major aspect of the Wired for Management[2] structure by Intel and
is depicted in the particular distributed by Intel and SystemSoft. PXE adaptation 2.0 was discharged in December 1998, and the
update 2.1 was made open in September 1999.[3] The PXE condition utilizes a few standard client‑server conventions including
DHCP and TFTP (presently characterized by 1992 distributed RFC 1350). Inside the PXE diagram, the customer side of the
provisioning condition is an indispensable piece of the PXE standard and it is actualized either as a Network Interface Card (NIC)
BIOS expansion or current gadgets in UEFI code. This particular firmware layer makes accessible at the customer the elements of an
essential Universal Network Device Interface (UNDI), a moderate UDP/IP stack, a Preboot (DHCP) customer module, and a
TFTP customer module, together with framing the PXE application programming interfaces (APIs) utilized by the NBP
when expecting to cooperate with the administrations offered by the server partner of the PXE condition. TFTP's low throughput,
particularly when utilized over high-idleness joins, has been at first alleviated by the TFTP Blocksize Option RFC 2348 distributed
in May 1998, and later by the TFTP Windowsize Option RFC 7440 distributed in January 2015, permitting possibly bigger payload
conveyances and therefore improving throughput. P and TFTP.
The idea of driving the PXE started at the beginning of conventions like BOOTP/DHCP/TFTP, and starting in 2015, it frames some
portion of the Unified Extensible Firmware Interface (UEFI) standard. In present-day server farms, PXE is the most regular choice
for working framework booting, establishment, and arrangement. [4][5][6]

IV. IPMI
The Intelligent Platform Management Interface (IPMI) is a lot of PC interface determinations for a self-ruling PC subsystem that
gives the board and observing capacities autonomously of the host framework's CPU, firmware (BIOS or UEFI) and working
framework. IPMI characterizes a lot of interfaces utilized by framework chairmen for out-of-band the executives of PC
frameworks and checking of their activity. For instance, IPMI gives an approach to deal with a PC that might be controlled off or
in any case inert by utilizing a system associated with the equipment instead of a working framework or login shell. Another
utilization case might be introducing a custom working framework remotely. Without IPMI, introducing a custom working
framework may require ahead to be genuinely present close to the PC, embed a DVD or a USB streak drive containing the OS
installer, and complete the establishment procedure utilizing a screen and a console. Utilizing IPMI, an overseer can mount an ISO
picture, recreate an installer DVD, and play out the establishment remotely.
The detail is driven by Intel and was first distributed on September 16, 1998. It is bolstered by more than 200 PC framework
sellers, for example, Cisco, Dell, Hewlett Packard Enterprise, Intel, Marvell Semiconductor, NEC Corporation, SuperMicro, and
Tyan.[7][8]

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue VI June 2020- Available at www.ijraset.com

 1068 ©IJRASET: All Rights are Reserved

V. HYPERVISOR
A hypervisor (or virtual machine screen, VMM) is PC programming, firmware, or equipment that makes and runs virtual
machines. A PC on which a hypervisor runs at least one virtual machine is known as a host machine, and each virtual machine is
known as a visitor machine. The hypervisor presents the visitor working frameworks with a virtual working stage and deals with
the execution of the visitor working frameworks. Different occurrences of an assortment of working frameworks may share the
virtualized equipment assets: for instance, Linux, Windows, and macOS cases would all be able to run on a solitary physical x86
machine. This stands out from working framework level virtualization, where all examples (ordinarily called compartments)
must share a solitary part, however, the visitor working frameworks can contrast in userspace, for example, extraordinary Linux
disseminations with a similar bit.
The term hypervisor is a variation of the administrator, a conventional term for the portion of a working framework: the
hypervisor is the boss of the supervisor,[1] with hyper- utilized as a more grounded variation of super-.[a] The term dates to around
1970;[2] in the prior CP/CMS (1967) framework the term Control Program was utilized.[9]

VI. METHODOLOGY
the framework is a system and the components inside the system are the use cases for the system. The actor uses the system and
avails the functions and services provided by the system Which intern interface with the database to find the status of the available
HW and selects appropriate HW with the required capability and install the hypervisor, provisions the VMS. End-user interacts
with the system by providing the command parameter representing the details of the request. The response of the installation of
requested Host hypervisor, the configuration of the setup of VMS, and either will get only the setup to work on or the user or will
be provided the test result after running the mentioned test depending on the type of request

The Argument parser component takes the parameter from the user for the request and parses the parameter and if there is any
inconsistent or ambiguous request it displays the appropriate error to the user. This component also provides the helper text in
case the user wants the help to initiate the command. After parsing the command calls the main function with appropriate parameter
After the main function is called it checks the database for the specific HW and determines its state and depending upon the state it
decides how to proceed to configure and setup the setup for the test.
After the argument is parsed and passed to the main function, the main function queries the database and finds the current state of
the HW, and if the HW has hypervisor already installed then it does not reinstall unless the version specified is different in the
Database. The first component is the argument parser which takes the argument from the user and parsers argument and provides
help to the user and displays the appropriate error message. Then call the main function with the appropriate arguments.
Main function queries the database and gets the state of the particular HW depending upon the user request and depending upon the
state of the system it will determine to proceed further, First, it checks is the appropriate hypervisor is installed and if not it will
start with installation, and if the appropriate hypervisor is installed then check the version of the hypervisor and is the version is
different the proceed with the installation of the hypervisor, After the installation, it proceeds with the configuring the topology in
the host machine. So once the state of HW is determined then it sends the IPMI command to HW which restart and in the
meantime initialize the appropriate files in the PXE server for the system to be able to install. After the system restarts it requests
the IP address from the DHCP server and once it gets the response from the DHCP server it assigns the network parameter and
starts to install the Hypervisor After the installation is done it finds out the type and number of the VMs required and proceed to
provision the VMs and it requests the FTP server for the installation image and after getting the installation image ait proceed to
install the image. After the installation is complete, the network type is determined from the user argument, it is supported then it
proceeds to configure the network type, this involves the bridge, macvtap, SRIOV, PCI-pass-through network type. Which
require a different procedure to configure. The third component is the network topology component after hypervisor is installed,
VM is provisioned and network type is configured and then the topology is determined from the user parameter, topology is the
network how the VMS communicate, so for the topology to setup the should the connection between the vem should be
established, for this vms need to share the interface to be able to communicate, hence depending upon the topology information
connection are made between the VMS with appropriate network type
If the request is the only topology, then the execution is finished and updated to the user. On the other hand, if the request is the
only suite then the depending upon the network type and suite information is queried from the specified YAML file and the test
is initiated with the test controller that has its server.
After the test is initiated, the live test results can we view in the GUI provided by the test controller. After the test is done the user is
sent the specified requested mail in the argument provided, It has the capability to send multiple emails.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue VI June 2020- Available at www.ijraset.com

 1069 ©IJRASET: All Rights are Reserved

A. Argument Parser
This is a component which handles the argument provided by the user, It takes the user arguments and parses the argument and
provides the argument to the function.
It has the rules specified for how to parse the argument, if there is inconsistency in the argument it automatically reports the error to
the user, This also includes.
This also includes the sanity checking module where it reads the file where all the supported arguments are written and when the
initial testing of the argument Is done, it verifies the argument against the supported value and if the argument is not consistent with
te supported.

B. PxeBoot
The main responsibility of this component to install the appropriate hypervisor to the Host machine. First is selecting the
appropriate HW depending on the user request, there are different hardware dedicated to the different hypervisor stored in the
database. After it selects the appropriate hardware form the database, it starts the PXE process, where it sends the DHCP packet
asking for the IP address and location of the PXE server, where the DHCP replies with the IP address and location of the PXE
server. After finding the PXE server and having the IP address defined, to downloads the boot image and start the booting process
After the booting process is started it downloads the appropriate image file and starts the installation with the instruction written in
the kickstart file.

C. Setup VMS
This module is responsible to set up the virtual machine as requested by the user, depending on the user request it downloads the
appropriate image from the FTP server. And starts the provisioning of the VMS.
After the VMS are up and running, It is configured to have the IP address, and after boot installations.
This component also sets up the network type, such as paravirtual, single root input-output (SRIOV), depending upon the user
request. After the VMS are up and configured it created the topology as requested by the user.

VII. CONCLUSION
This framework eliminated the need for different machines for different hypervisors. A single machine can be used to provision
any hypervisor. This frees up HW resources.
The framework has abstracted the hypervisor and topology deployment for customer/ QA/ dev personnel.
Reliable hypervisor installation and topology creation and switching mechanisms enabled fast feature development and test.
The framework has the intelligence to be ported to any machine. The code can learn the HW information and based on user
input create topology accordingly.
The framework is effective, efficient, and robust with great user experience as it is expected to run all the time and to be able to
handle the variable requests. The framework is Scalable because it should be able to incorporate the new hypervisor and its version
in the future. The framework will help the engineer run a selective test with ease and will give the ability to select the test and the
hypervisor to run the test on. This will help all engineer to contribute to infrastructure development and test case

REFERENCES
[1] T. Ylonen; C. Lonvick (January 2006). The Secure Shell (SSH) Protocol Architecture. Network Working Group of the IETF. doi:10.17487/RFC4251. RFC

4251.
[2] A. Network Working Group of the IETF, January 2006, RFC 4252, The Secure Shell (SSH) Authentication Protocol
[3] "OpenSSH: Project History and Credits". openssh.com. 2004-12-22. Archived from the original on 2013-12-24. Retrieved 2014-04-27.
[4] Avramov, Lucien (December 31, 2014). The Policy Driven Data Center with ACI: Architecture, Concepts, and Methodology. Cisco Press. p. 43.

ISBN 1587144905. In modern data centers, administrators rarely install new software via removable media such as DVDs. Instead, administrators rely on PXE
(Preboot eXecution Environment) booting to image servers

[5] "Wired for Management Baseline - Version 2.0 Release" (PDF). Intel Corporation. 1998-12-18. Retrieved 2014-02-08.
[6] Tulchak L.V. “Cryptocurrencies: A Brief Thematic Review Archived 25 December 2017 at the Wayback Machine. Social Science Research Network.

Date accessed 28 August 2017.”
[7] Anaconda/Kickstart definition from the Fedora project
[8] "Complete Kickstart: How to Save Time Installing Linux" at Linux Magazine
[9] Bernard Golden (2011). Virtualization For Dummies. p.54.

