

2 IV April 2014

www.ijraset.com Vol. 2 Issue IV, April 2014
ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 94

Issues and Challenges of Error Recovery
Techniques for Mobile Distributed Systems

Monika Nagpal1, Parveen Kumar2, Surender Jangra3

1Research Scholar, Deptt. of CSE, Singhania University Pacheri Bari (Jhunjhunu),(Raj)
2 Deptt. of CSE, Bharat Institute of Engg. & Tech. Meerut(UP)
3 Deptt. of IT Engg. HCTM Technical Campus, Kaithal(HRY)

Abstract— The emergence of mobility in a distributed system, has led to the start of new era of computing. Recent technological
advances in mobile or hand-held devices and wireless technology have made the mobile computing affordable. Due to new emerging
characteristics of mobile node, mobile computing environment is more error prone as compared to fixed infrastructure. In this paper we
present failure recovery techniques, issues and challenges with respect to mobile distributed systems.

Keywords— Mobile Distributed Systems, Checkpointing, Base Station, Mobile Host, Fault Tolerance

I. INTRODUCTION

A Mobile Computing System is a distributed system where
some of processes are running on Mobile Hosts (MHs) [5].
The term “Mobile” means able to move while retaining its
network connection. To communicate with MHs, mobile
support stations (MSSs) are added. An MSS communicates
with other MSSs by wired networks, but it communicates with
MHs by wireless networks refer to Fig. 1.

A cell is a geographical area around an MSS in which it can
support an MH. An MH can change its geographical position
freely from one cell to another cell or even area covered by
cell. At any given instant of time an MH may logically belong
to only one cell ; its current cell defines the MH’s location
and the MH is considered local to MSS providing wireless
coverage in the cell. An MSS has both wired and wireless
links and acts as an interface between static network and a part
of mobile network. Static network connects all MSSs. A static
node that has no support to MH can be considered as an MSS
with no MH. Critical applications are required to execute
fault-tolerance on such system [17]. The static network
provides reliable, sequenced delivery of messages between
any two MSSs, with arbitrary message latency.

Fig. 1 Working Block Diagram Mobile Distributed System (MDS)

A. Mobile Communication Characteristics and their
implications

Mobile data communication has several characteristics that
must be taken into consideration when developing any failure
recovery method. These characteristics are as following:

WIRED NETWORK

MSS

MSS

Wireless Cell

MSS

MSS

FH

MH

www.ijraset.com Vol. 2 Issue IV, April 2014
ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 95

Peer-to-peer client/server communication: The
communication pattern between an application in fixed
network and its peer application on MH is peer-to-peer; which
means that the communication can be initiated by either side
(MH or MSS).

Real time communication: Real time issue arises when
there are actions that must be completed within a specified
amount of time otherwise they become useless or even
harmful after that. In this context, the entity that initiates
requests should receive replies within a specified period of
time otherwise timeouts occur. The real time aspects of
mobile communication originate from both the end user
application and the physical system.

High message rate: The number of messages received and
sent per unit time is high Therefore; any recovery technique
that uses message logging has to deal with two particular
problems i.e. overhead and storage.

Distributed service architecture: The fixed network is
distributed over a large geographic area to provide mobility. It
is normally that several applications running on different
nodes cooperate together to complete a single service for an
MS. This distributed architecture will affect the selection of
fault tolerance approach

Scarce radio resources: The limited bandwidth of the air
interface underlines the need of efficient communication
between mobile stations and fixed network.

II. FAULT TOLERANCE SYSTEM AND ERROR RECOVERY

TECHNIQUES

A fault is anomalous physical condition which could lead to
system failure. Failure can be classified in following two
categories:

Hard failure: Hard failure implying permanently failure or
complete loss of connectivity of node. These types of failures
are non-voluntary in nature and processes stops any further
actions forever such as falls, breaks, lost or stolen.

Soft failure: Soft failures do not permanently damage the
node. In such case, MH informs to MSS prior to its occurrence
such as battery discharge, disconnections or operating crashes.
[15]

Fault tolerance is survival attribute of system and fault
tolerant techniques enable a system to perform tasks in the

presence of faults which involves fault detection, fault
location, fault containment and fault recovery.

Failure recovery is a process that involves restoring an
erroneous state to an error-free state. Recovery from errors in
fault tolerant systems can be characterized as either rollback
or roll forward refers to fig. 2].

A. Forward Error Recovery

When system detect the error, forward error recovery
technique takes the system state at that time and correct it and
to be able to move forward. Hence, in this technique the
nature of error and damaged caused by faults must be
completely and accurately assessed, which make it possible to
remove those errors in the process state and enable the process
to move forward [26]. This approach is not used in distributed
and mobile systems as accurate assessment of all the faults
may not be possible. Replication implements roll-forward
mechanism where the entity (mainly a server application) is
replicated to establish a group of replicas and in the event of
the failure of one entity, the other replicas can take over and
continue processing requests. Active replication where all
server replicas run concurrently and passive replication in
which one member of the server group is designated as the
primary, are two best known replication approaches.

Fig. 2 Partial view of error recovery techniques

B. Backward Error Recovery

Backward error recovery or checkpoint restart has been
largely employed as a fault tolerant mechanism for DSs. In

www.ijraset.com Vol. 2 Issue IV, April 2014
ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 96

this technique, system rollback to some earlier state, correct it
and roll forward from here. Thus, backward error recovery is
more general recovery mechanism [25]. Backward error
recovery can be log based or checkpoint based which is
explained in the next sections.

Log-based Rollback Recovery Mechanism: In log-based
recovery, sending message history of processes since last
checkpoint, are kept in main memory [16]. In case of a failure,
a process can ask fault-free processes the needed messages.
“Spooling” can be performing if volatile message logging
takes too much memory space. In message logging protocols,
each process periodically records its LS and logs the messages
that it receives after having recorded that state on stable
storage. When a process crashes, a new process is created in
its place. The new process is given the appropriate recorded
LS, and then the logged messages are replayed in same order
as the process originally received them. All message-logging
protocols require that once a crashed process recovers, its
recovered state is consistent with the states of the other
processes [20]. There are three types of logging protocols.

Pessimistic Logging: The pessimistic logging approach
does not require any synchronization between processes but
received messages are logged synchronously. During logging,
it blocks the receiver until the message is logged to a stable
storage. A process Pi never sends a message until it knows
that all messages received and processed so far are logged. In
such way it guaranteed that orphan is never created in
pessimistic logging approach. During recovery all messages
received in the time between the latest checkpoint and the
fault are replayed to it from the stable storage in the same
order as they were received before the fault [14].

Optimistic Logging: In optimistic message logging
approach, message may not be logged immediately. The
receiver continues its normal actions. The messages are
logged at some point of time during idle time of the system
[12]. The application does not block, and the determinants are
spooled to stable storage asynchronously. This approach has
less average cost of logging a message in the comparison of
pessimistic approach (Costopti_log<Costpessi_log) [12]. It
reduces failure free overhead, but complicates the recovery
process.

Causal Logging: Causal logging approach is a mix of the
optimistic (orphan free) and pessimistic logging (non-
blocking) approach which avoid the orphan and blocking. In
this approach, dependency information is piggybacked on

application messages and this dependency information
including with message contents are logged in the volatile
memory of sender [12]. Hence, this approach is non-blocking,
orphan free and has only one overhead of storing a message in
volatile memory.

C. Checkpointing and Recovery Mechanism

Checkpointing and rollback recovery is an efficient error
recovery mechanism used in DSs [1]. It enable a system to
tolerate failures by periodically saving the entire state during
failure free execution and rolling back to the saved state if a
failure occur. It works on fail-stop model and mainly has two
phases: (a) saving a checkpoint in stable storage. (b)
Checkpoint recovery following the failure.

Fig. 3 Checkpoint and Recovery

During first phase of checkpointing approach, the state of
each process in the system is periodically saved on stable
storage, which is called a checkpoint of a process. To recover
from a failure refer to fig. 3, the system restarts its execution
from a previous error-free, CGS [4]. In a DS, since the
processes in the system do not share memory, a global state of
the system is defined as a set of local states, one from each
process. A global state is said to be “consistent” if it contains
no orphan message; i.e., a message whose receive event is
recorded, but its send event is lost [4]. Three flavors of
checkpointing based recovery protocols are coordinated
checkpointing, uncoordinated checkpointing and
communication induced checkpointing (CIC).

Coordinated Checkpointing: Coordinated checkpointing is
a commonly used technique for fault tolerant in mobile DSs.
In coordinated approach it is assumes that a single process
which is know as initiator, invokes the checkpointing
algorithms to determining the CGC. In this approach
processes communicate and synchronize through system
messages before taking checkpoint and coordinate their
checkpointing actions in such a way that checkpointing
approach yields a CGS. Mostly it follows two-phase commit

www.ijraset.com Vol. 2 Issue IV, April 2014
ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 97

structure [2], [19], [21], [30]. In the first phase, processes take
tentative checkpoints and in the second phase, these are made
permanent. The main advantage is that only one permanent
checkpoint and at most one tentative checkpoint is required to
be stored. In case of a fault, processes rollback to last
checkpointed state. A permanent checkpoint cannot be
undone. In some approaches initiator of the checkpointing
process forces the dependent processes (minimum processes).
The coordinated checkpointing protocols can be classified into
two types: blocking and non-blocking. In blocking algorithms,
as mentioned above, some blocking of processes takes place
during checkpointing [2]. In non-blocking algorithms, no
blocking of processes is required for checkpointing [19], [21].
The coordinated checkpointing algorithms can also be
classified into following two categories: minimum-process
and all process algorithms. In all-process coordinated
checkpointing algorithms, every process is required to take its
checkpoint in an initiation [19], [21]. In minimum-process
algorithms, minimum interacting processes are required to
take their checkpoints in an initiation [2]. In coordinated
approach CGS is achieved during run-time, while in the
independent approach the determination of a consistent
recovery line was left to the recovery phase, which could
result in some rollback propagation [28]. It does not suffer
from rollback propagations.

Uncoordinated Checkpointing: In independent
checkpointing, processes do not synchronize their
checkpointing activity and processes are allowed to records
their local checkpoints in an independent way [18], [20], [28],
[31]. After a failure, system will search a CGS by tracking the
dependencies from the stable storage. The main advantage of
this approach is that there is no need to exchange any control
messages during checkpointing. But this requires each process
to keep several checkpoints in stable storage and there is no
certainty that a global consistent state can be built. The main
disadvantage of uncoordinated approach is the domino-effect
[20]. In [Fig. 4], processes P1 and P2 have independently
taken a sequence of checkpoints. The interleaving of messages
and checkpoints leave no consistent set of checkpoints for P1
and P2, except the initial one at {C10, C20). Consequently,
after P1 fails, both P1 and P2 must roll back to the beginning
of the computation.

Fig. 4 Domino-effect

It should be noted that global state {C11, C21} is
inconsistent due to orphan message m1. Similarly, global state
{C12, C22} is inconsistent due to orphan message m4. The
possibility of the Domino effect may cause the loss of large
amount of useful work and also increases the checkpointing
overheads. Rollback propagations also make it necessary for
each processor to store multiple checkpoints, potentially
leading to a large storage overhead.

Communication-induced Checkpointing: In the CIC
approach, a GC is similar to the approach of coordinated
checkpointing while rollback propagation can be avoided by
forcing additional un-coordinated local checkpoint in
processes [11], [26]. Protocols piggyback control information
on application messages, thereby, avoids addition of explicit
control message, to the computation, during checkpoint
creation [10]. Quasi-synchronous checkpointing algorithms
can be classified into two categories [20]. First is Model
based checkpointing in which checkpointing protocol tries to
avoid the domino effect by relying on preventing patterns of
communications and checkpoints that could result in
inconsistent states among the existing checkpoints and second
is Index based checkpointing where a sequence number is
assigned to local checkpoint local checkpoint. These assigned
sequence number monotonically increasing after every
checkpoint, such that the checkpoints having the same index
at different processes form a consistent state. These index
numbers are piggybacked on application an message which
helps the receiver in deciding when to take snapshot. Index
based checkpointing protocol, can be used with time
coordination [6] to reduce the number of total checkpoints.

D. N-version programming

N-version programming [9] uses design diversity approach
and it is defined as the independent generation of N>=2
functionally equivalent programs from the same initial
specification. Independent generation of programs means that
the programming efforts are carried out by N development
teams that do not interact with respect to the programming

www.ijraset.com Vol. 2 Issue IV, April 2014
ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 98

process. The initial specification is a formal specification in a
specification language. The goal of the initial specification is
to state the functional requirements completely and
unambiguously, while leaving the choice of implementations
to the N programming efforts. N-version programming
assumes that all programs contain faults, but it relies on the
fact that the number of hidden faults will be small and that
they will be in different locations in each of the versions.
Wherever possible, different algorithms, programming
languages and compilers are used in each separate effort.

III. LIMITATIONS OF EXISTING ERROR RECOVERY

TECHNIQUES[3][7]

In this section, we explain the general limitations of these
techniques and leave the specific ones concerning the mobile
environment to the next chapter.

A. Backward error recovery has two assumptions:

Transient faults: Without assuming that faults are transient,
the faulty process will certainly fail again at exactly the same
place. The faulty process will roll back to the latest saved state
and then continues its execution (exactly the same program
instructions are repeated) to restore the pre-failure state before
it hits the error again. Note that the faulty entity may or may
not reactivate the permanent fault depending on the latest
checkpoint time, but it will certainly hit the error.

Good checkpoints: Rollback assumes that only good data is
saved to a stable storage and this implies that the fail-stop
property must be upheld. In other words, the saved states must
not contain the error that is caused by the transient fault.

B. Forward Error Recovery has also two assumptions:

Transient fault: Replication approach depends on the
assumption that most of the software faults are transient. If
this assumption is not applied, then all members of the replica
group will fail at the same time, for example because of a
permanent software bug.

Fail-stop: Most of the replication techniques assume fail-
stop property, i.e. an entity works correctly or stops
functioning completely. This assumption can be relaxed at the
cost of more complex voting algorithm and an increase in the
number of replicas.

C. N-Version Error Recovery Techniques Assumptions:

N-version or the use of diversity has no technical limitation
in general, but its main limitation is its high cost both with
respect to implementation and maintenance. There is a big
discussion whether it is better to concentrate on developing
one reliable version rather than less reliable multi-versions.
The two assumptions about the nature of fault fail-stop and
transient are dated back to the early 1980’s and they can be
probably true for some relatively simple applications. But,
these assumptions will simply not hold for modern distributed
communication applications. Everyday experience with
communication applications has shown that many (if not
most) of the software faults are permanent and they are
reproducible, but they require rare sequence of events to be
activated. This can be explained with the fact that it is almost
impossible and not realistic to test every path and combination
in these large and complex applications [3],[7].

IV. CHALLENGES FOR DESIGNING ERROR

RECOVERY TECHNIQUES FOR MDSS

The existence of mobile nodes in Distributed Systems
introduces new challenges that need proper handling while
designing a checkpointing algorithm for such systems. MHs
are integral part of mobile computing environment which
frequently changes its locations. The portable computers can
get arbitrarily small, down to the size of; say a walkman, a
pocketbook, a watch, or a ring. The implications of portability
are small size and weight and dependent on battery. Also
wireless communication is susceptible to high failure rate and
transmission interference or interception. This is a fixed
network consisting of base stations, routers, gateways,
resource management, mobility management units, etc. that
exist to support the operation of the wireless mobile stations.
The fixed network takes the overall coordination and control
of the communication with the MSs and it uses peer-to-peer
based protocols to achieve that. Due to the unique
characteristics of mobile devices and wireless connectivity
communication there are following issues that complicate the
design checkpointing algorithms for MDS and need to handle
more carefully.

Mobility: Changes in location of MH complicates routing
of messages. Messages sent by a node to another node may
have to be rerouted because the destination node (MH)
disconnected from old MSS and now connected to new MSS.
Checkpointing schemes that send control messages to MHs,
will first need to locate the MH within the network, and
thereby incur a search overhead [13], [14].

www.ijraset.com Vol. 2 Issue IV, April 2014
ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 99

Limited Bandwidth: There is a wireless communication
between MHs and their local MHH. In terms of data rate, the
data rates of infrared networks range from 19.2 kbps to 1
Mbps and that for radio networks is 19.2 kbps. Wireless LANs
have a data rate of 1 to 2 Mbps and that can be extended to 10
Mbps. Adaptive communication protocols have been proposed
to compensate for the slow speed of some existing mobile
communication links and to save the communication cost by
reducing link usage. Low bandwidth constraints are satisfied
by reducing the number of system messages required to
collect a consistent snapshot [27].

Frequent disconnection: in mobile computing all the MHs
are connected to their local MSS through wireless link and
this connection is temporary with periods of disconnection.
MHs may disconnect from the network temporarily or
permanently [27].

Lack of stable storage: Due to vulnerability of mobile node
to catastrophic failures e.g. loss, theft or physical damage, the
disk storage on an MH cannot be considered as the stable
storage. A reasonable solution is to utilize the stable storage at
MSSs to store checkpoints of the MHs. Thus, to take a
checkpoint, an MH has to transfer a large amount of data to its
local MSS over the wireless network [1].

Small storage capacity: Small size and weight of a mobile
computer means restricted memory size, small storage
capacity and small user interface. So large amount of
checkpointed data are not stored on local MHs memory.

Limited battery life: The battery at the MH has limited life
and there is not any permanent source of charging during
moving from one location to other locations. Therefore energy
conservation checkpointing techniques are required for MDS.

V.CONCLUSION

In this paper we presents different issues and challenges for
MDSs which provides high availability of services as a user
can access the information from “anywhere” or “anytime” but
it is less reliable compares to distributed systems. A system is
said to be reliable if it can continue to provide the correct
services, in the even of failure also. In mobile system, a MH is
more error prone compares to fixed host (FH) as it frequently
changes its location. A single failure in mobile distributed
systems (MDSs) can affects a large number of users and
computation. As a result, the mobile systems need to be able
to tolerate faults to increase its reliability. Due to the mobility
of nodes and wireless connectivity, MDSs have different

characteristics, for example, week wireless connectivity,
frequently disconnection, lack of stable storage on mobile
nodes, finite power source, and vulnerable to physical
damages that makes the already existing distributed fault
tolerance algorithms unsuitable. Hence there is a great need to
design an efficient checkpoint and faults tolerance protocols
for MDS that specifically focuses on lessening power
consumption, effective using the limited available memory
and utilizing the bandwidth effectively.

REFERENCES

[1] Acharya A. and Badrinath B.R., “Checkpointing
Distributed Application on Mobile Computers”, in the
Proc. of the 3rd Int’l Conf. on Parallel and Distributed
Information Systems, pp. 73-80, Sept. 1994.

[2] Koo R. and Toueg S., “Checkpointing and Roll-Back
Recovery for Distributed Systems”, IEEE Trans. on
Software Engg., Vol.13, No.1, pp.23-31, Jan. 1987.

[3] M. Zib Beiroumi, High Available Mobile Infrastructure
Applications, proceedings of the 16th IEEE International
Symposium on Software Reliability Engineering (ISSRE
2005), pp. 181-190, Chicago, USA, Nov, 2005.

[4] Cao G. and Singhal M., “On Coordinated Checkpointing
in Distributed Systems”, IEEE Trans. on Parallel and
Distributed Systems, Vol. 9, No.12, pp. 1213-1225,
Dec.1998.

[5] Cao G. and Singhal M., “Mutable Checkpoints: A New
Checkpointing Approach for Mobile Computing
Systems”, IEEE Trans. on Parallel and Distributed
Systems, Vol. 12, No.2, pp. 157-172, Feb. 2001.

[6] Singh A.K., “On Mobile Checkpointing using Index and
Time Together”, World Acdemy of Science, Engineering
and Technology, Vol 32, pp. 144-151, 2007.

[7] M. Zib Beiroumi, Recovery of Infrastructure Software in
the Mobile Network, NTS-17, 17th Nordic Teletraffic
Seminar, pp. 137-148, August 25, 2004, Fornebu,
Norway.

[8] Changheng Shao, Fengjing Shao, Xiaoning Song, and
Rencheng Sun, “A Dynamic Checkpointing and
Rollback Recovery Solution Based on Task Switching”,
in the Proc. of the Int’l Symp. on Intelligent Information
Systems and Applications (IISA’09) Qomgdap. P.R.
China, pp. 354-358, Oct. 28-30, 2009.

www.ijraset.com Vol. 2 Issue IV, April 2014
ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page
100

[9] A. Avizienis and L. Chen, On the implementation of N-
version programming for software fault tolerance during
execution, Proceedings of the IEEE COMPSAC 77,
pages 149–155, Nov 1977.

[10] Tsai J., “An Efficient Index-Based Checkpointing
Protocol with Constant size Control Information on
Messages,” IEEE Trans. on Dependable and Secure
Computing, Vol. 2, No. 4, pp. 278-296, Oct-Dec 2005.

[11] Najib A. Kafahi, Said AI-Bokhitan and Ahmed AI-
Nazer, “On Disk-based and Diskless Checkpointing for
Parallel and Distributed Systems”, An Empirical
Analysis, Information Technology Journal, Vol. 4(4), pp.
367-376, 2005.

[12] Mandal P.S. and Mukhopadhyaya K., “Performance
Analysis of Different Checkpointing and Recovery
Schemes using Stochastic Model” Journal of Parallel and
Distributed Computing, No.66, pp. 99-107, 2006.

[13] Awerbuch B. and Peleg D., “Concurrent Online
Tracking of Mobile Users”, in the Proc. of the ACM
Symp. on Comm., Arch. and Protocols SIGCOMM,
1991.

[14] Acharya A., “Structuring Distributed Algorithms and
Service for networks with Mobile Hosts”, Ph. D. Thesis,
Rutgers University, 1995.

[15] Singhal M. and Shivaratri Niranjan G., “Advance
Concept in Operating System” Tata Mcgraw-Hill, 2005.

[16] Alvisi, Lorenzo and Marzullo, Keith, “Message Logging:
Pessimistic, Optimistic, Causal, and Optimal”, IEEE
Trans. on Software Engineering, Vol.24, No.2, pp.149-
159, Feb.1998.

[17] Adnan Agbaria, William H. Sanders, “Distributed
Snapshots for Mobile Computing Systems”, in the Proc.
of the Second IEEE Annual Conf. on Pervasive
Computing and Communications (Percon ’04), pp. 1-10,
2004.

[18] Bhargava B. and Lian S.R., “Independent Checkpointing
and Concurrent Rollback for Recovery in Distributed
Systems-An Optimistic Approach”, in the Proc. of the
17th IEEE Symp. on Reliable Distributed Systems, pp.
3-12, 1998.

[19] Candy K.M. and Lamport L., “Distributed Snapshots:
Determining Global State of Distributed Systems”, ACM
Trans. on Computing Systems, Vol. 3, No. 1,pp. 63-75,
Feb.1985.

[20] Elnozahy E.N., Alvisi L., Wang Y.M. and Johson D.B.,
“A Survey of Rollback- Recovery Protocols in Message-
Passing Systems”, ACM Computing Surveys, Vol.34,
No.3, pp. 375-408, 2002.

[21] Elnozahy E.N., Johson D.B. and Zwaenepoel W., “The
Performance of Consistent Checkpointing”, in the Proc.
of the 11th Symp. on Reliable Distributed Systems, pp.
39-47, Oct. 1992.

[22] Elnozahy and Zwaenepoel W, “Manetho: Transparent
Roll-back Recovery with Low-overhead, Limited
Rollback and Fast Output Commit”, IEEE Trans. on
Computers, Vol. 41, No. 5, pp. 526-531, May 1992.

[23] Elnozahy and Zwaenepoel W, “On the Use the
Implementation of Message Logging”, in the 24th Int’1
Symp. on Fault Tolerant Computing, IEEE Computer
Society, pp. 298-307, June 1994.

[24] Johnson D., “Distributed Systems Fault Tolerance Using
Message Logging and Checkpointing”, Ph. D. Thesis,
Rice Univ., Dec.1989.

[25] Manivannan D., Netzer R.H. and Singhal M., “Finding
Consistent Global Checkpoints in a distributed
computation”, IEEE Trans. on Parallel & Distributed
Systems, Vol.8, No.6, pp.623-627, June 1997.

[26] Pardhan D.K., and Vaidya N., “Roll-forward
Checkpointing Scheme: Concurrent Retry with Non-
dedicated Spares”, in the Proc. of the IEEE Workshop on
Fault-Tolerant Parallel and Distributed System, pp. 166-
174, July 1992.

[27] Prakash R. and Singhal M., “Low-Cost Checkpointing
and Failure Recovery in Mobile Computing Systems”,
IEEE Trans. on Parallel and Distributed Systems, Vol. 7,
No.10, pp1035-1048, Oct. 1996.

[28] Storm R. and Temini S., “Optimistic Recovery in
distributed Systems”, ACM Trans. on Computer
Systems, pp. 204-226, Aug. 1985.

www.ijraset.com Vol. 2 Issue IV, April 2014
ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page
101

[29] Sistla A.P. and Welch J.L., “Efficient Distributed
Recovery Using Message Logging”, in the Proc. of the
18th Symp. on Principles of Distributed Computing”, pp.
223-238, Aug. 1989.

[30] Gupta B., Rashimi S., Rishad A. Rias, and Guru, “A
low-Overhead Non-blocking Checkpointing Algorithm
for Mobile Computing Environment”, LNCS 3947, pp.
597-608,

[31] Park T., Woo N. and Yeom H. Y, “An Efficient
Recovery Scheme for Fault Tolerant Mobile Computing
Systemns”, FGCS-19, 2003.

