
 

2 IV April 2014



www.ijraset.com Vol. 2 Issue IV, April 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E

AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 102

Time Synchronous Adaptive Rollback Recovery 

Protocol for Mobile Distributed Systems
Monika Nagpal

1
, Parveen Kumar

2
, Surender Jangra

3

1Research Scholar, Deptt. of CSE, Singhania University Pacheri Bari (Jhunjhunu),(Raj)
2

Deptt. of CSE, Bharat Institute of Engg. & Tech. Meerut(UP)
3

Deptt. of IT Engg. HCTM Technical Campus, Kaithal(HRY)

Abstract-- Time can play a important role for determining consistent global state in mobile computing environment in a minimum cost as 

it does not requires extra coordination message and thus, avoids most causes of overhead. In this paper, an time synchronous adaptive 

rollback recovery protocol for mobile environment is proposed. The protocol takes minimum number of checkpoints. Proposed protocol 

also performs very well in the aspects of minimizing the number and size of messages transmitted in the wireless network. It uses time to 

indirectly synchronise for creating the new consistent state. Therefore, the protocol brings very little overhead to a mobile host with limited 

resource. Additionally, by taking advantage of reliable timers in MSSs, the time-based rollback recovery protocol can adapt to wide area 

networks

Keywords฀ Checkpointing, Global State, Distributed System, Mobile Host, Mobile Support System

I. INTRODUCTION

Checkpointing/rollback recovery is an attractive and 

popular technique which gives fault tolerance without 

additional efforts in DSs [11][12]. A checkpoint is a global 

state of a process stored on stable storage. In a DS, since the 

processes in the system do not share memory and have not any 

synchronized clock, a global state of the system is defined as a 

set of LSs, one from each process. A global state is said to be 

“consistent”฀ if฀it฀contains฀no฀orphan฀message;฀i.e.,฀a฀message฀
whose receive event is recorded, but its send event is lost. To 

recover from failure, the system restarts its execution from a 

previous CGS saved on the stable storage during fault-free 

execution.

Adaptive protocol uses time to avoid having to exchange 

messages during the checkpoint creation. A process saves its 

state whenever the local timer expires, independently from the 

other processes. The protocol keeps the various timers roughly 

synchronized to guarantee that processes' states are stored 

approximately in the same instant. When the application 

starts, the protocol sets the timers in all processes with a fixed 

value, the checkpoint period. The protocol uses a simple re-

synchronization mechanism to adjust timers during the 

application execution. Each process piggybacks in its 

messages the time interval until the next checkpoint. When a 

process receives a message, it compares its local interval with 

the one just received. If the received interval is smaller, the 

process resets its timer with the received value. 

II. RELATED WORK

In [4] Kim and฀Park’s฀algorithm฀the฀consistency฀problem฀is฀
solved by disallowing the Message sending during a period 

after a time expires. But this makes the checkpointing protocol 

become a blocking protocol.  CHI-YI LIN et. al. algorithm[6] 

the processes need not induced extra control message to 

coordinate for producing consistent global checkpointing 

state. Processes saves its state periodically whenever its local 

timer expires to indirectly the coordinate the creation of global 

state except their being obvious orphan and in-transit 

messages because timer are not well synchronized. These 

potential orphan or in-transit messages are consistent usually. 

They become true orphan or in-transit messages only in some 

special period. 

In฀[9]฀Men฀Chaoguang’s฀algorithm฀a฀two฀phase technology 

is used to handle potential inconsistent issues that may arise in 

Time-based algorithm. Assume that D is maximum deviation 

between the checkpoint timer of two processes and T is 

checkpoint period. MD is maximum deviation of two 

processes where฀MD฀ =฀D฀ +฀ 2nρT.฀ This฀ is฀ blocking฀ time฀ in฀
which a process can not send or receive messages otherwise 

inconsistency may arise due to orphan or in-transit messages 

the maximum and minimum message propagation delays are 

tdmax and tdmin. The messages sent, MD + tdmax time units 

before taking checkpoint may become in-transit messages. 

There are two kind of messages that can result in system 

inconsistencies. As shown in Fig.1  m1, m4 are potential 



www.ijraset.com Vol. 2 Issue IV, April 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E

AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 103

inconsistent message because the processes takes checkpoints 

in different time , messages m2 is an obvious in-transit 

messages and m2 is an obvious orphan messages. In the 

period T1 to T2, m1 become orphan temporarily. If fault occur 

during T1 to T2 the system cannot recover to consistent state 

otherwise m1 become a normal message.

In two phase technology two timers, Timer_ckp and 

Timer_pmt, are used to solve potential inconsistent issues. 

Whenever Timer_ckp expires, tentative checkpoint is taken 

and when Timer_pmt expires it converts tentative checkpoint 

into permanent checkpoint. Timer_ckp is set to T and 

Timer_pmt is set to T+D+2nρT,฀ where฀ n฀ is฀ checkpoint฀
sequence number. The messages sent, in MD + tdmax time 

units before Timer_ckp expires, are logged by saving in 

queue_in_transit to avoid inconsistencies and the messages 

sent, in ED time after Timer_ckp expires, are sent with 

checkpoint sequence number (CSN), so that receiver 

compares and takes forced checkpoint decision depending on 

its CSN to avoid inconsistencies.

Fig. 1 Orphan Message

III. SYSTEM MODEL

Nuno Neves[5] algorithm the processes are non-blocking 

because the consistency problem was solved by the 

information piggybacked in each message. But when the 

transmission delay between two mobile hosts becomes 

relatively large, the synchronization result of processes will be 

less accurate. The unique feature of the scheme is use of time 

to synchronize the checkpoint creation. They used time to 

indirectly coordinate the creation of recoverable consistent 

checkpoints. It requires checkpoints be sent back only to home 

agents which results in high failure free overhead during 

checkpointing. We use system model as in [5].

IV. PROPOSED ADAPTIVE PROTOCOL

In this section single phase non-blocking synchronous 

algorithm suitable for mobile computing environments. The 

main advantage of the algorithm is to produce a consistent set 

of checkpoints without the overhead of taking temporary 

checkpoints. The algorithm requires only minimum number of 

processes to take checkpoints in any execution of the 

checkpointing algorithm. Performance analysis shows that our 

proposed algorithm outperforms some existing important 

related works.

Checkpoint Initiation Assumption:

Any process may become checkpoint initiator. In our 

approach the node only desires to send checkpoint timer to 

those processes from which it receives computation 

message(s) i.e. dependent processes. If a process Pi needs to 

take a checkpoint then any of the following events occurs:

If Pi is the initiator.

a) If it receives a primary checkpoint timer from the 

initiator.

b) The first time it receives a secondary checkpoint timer 

and prior to that it has not received any primary 

checkpoint timer or any piggyback application 

message. 

The first time it receives an application message 

piggybacked with the checkpoint sequence number and prior 

to that it has not received any primary or secondary 

checkpoint timer message 

Checkpoint creation procedure:

The checkpoint creation procedure can be implemented 

using the code. The procedure consists of two timers at which 

computation messages are not allowed to send. One timer 

expires฀ (D+฀2nρT฀+฀ tdmax)฀ ฀ ฀ seconds฀ before the checkpoint 

and another expires at checkpoint time. The process need to 

block only synchronous message. Computation message can 

store in queue. For this purpose first time call the stopSMsg 

function. This function save the queued messages and reset 

the timer. The function createchkp () is executed when the 



www.ijraset.com Vol. 2 Issue IV, April 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E

AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 104

second timer expires It saves the process state, increments the 

checkpoint time with the checkpoint period T, and resets the 

timer. Next, createchkp() tests if ED seconds have passed 

since the checkpoint time if the condition is not satisfied, this 

means฀that฀the฀term฀2ρkT฀฀has฀grown฀too฀large,฀and฀that฀timers฀
need to be re-synchronized.

A. Notation and Data Structure: 

The following notations and data structure are used in our algorithm

sndi: A Boolean array of size n maintained by each process Pi. The array is initialized to all zeroes each time a 

checkpoint at that process is taken. When pi sends a computation message to process Pj, Pi sets sndi[j] to 

one.

init: A tuple (Pid, inum) maintained by each process Pi . Where pid indicates the checkpointing initiator that 

initiate this process to take its latest checkpoint. Where inum indicates the csn at process Pid when it took its 

local checkpoint on initiating the checkpointing process. Where init is appended to each system message and 

the first computation message to which a process sends after taking its local checkpoint.

csni: An array of n checkpoint sequence numbers (csn) at each process Pi. Each checkpoint sequence number is 

represented by an integer. csni[j] represents the checkpoint sequence number of Pj that Pi knows. In other 

words, Pi expects to receive a message from Pj with checkpoint sequence number csni[j]. Note: csni[j] is the 

checkpoint sequence number of Pi 

DVi[j]: An N x N dependency vector where each process show the dependency on another process which is used to 

built the dependency matrix D by MSSinit.

cellk: The wireless cell in which no. of processes exists are served by MSSk 

Recvi: An array of N bits of process Pi maintained฀ by฀ Pi’s฀ local฀ MSS.฀ In฀ the฀ beginning฀ of฀ every฀ checkpoint฀
interval. Recvi[j] is initialized to zero for j = 1 to N except that Recvi[i] always equals 1. When Pi receives a 

message฀m฀from฀Pj,฀and฀the฀receipt฀of฀m฀is฀confirmed฀by฀Pi’s฀MSS.฀Recvi[j]฀is฀set฀to 1.

chkp_timer: A Timer whose value is send with computation message to set the timer of receiver to take checkpoint. 

Local฀time฀of฀MSS’s฀Timer฀i.e.฀next฀checkpoint฀time฀is฀used฀to฀set฀the฀value.
stopSnaMsg: A flag with True or False. Initially False for all processes it change to True when blocking time interval 

starts.  

recv_csn: The฀recvi฀vector฀of฀the฀preceding฀checkpoint฀interval฀of฀process฀Pi฀which฀is฀maintained฀by฀Pi’s฀local฀MSS.
tdmin: A timer to store the minimum message delivery time.

tdmax: A timer to store the maximum message delivery time.

pchkpt_ti:  A timer whose value show the direct dependency between initiator and other processes.. To identify the 

primary timer initiator sends its own identity init (Pid, inum) with computation message. 

schkpt_timer: A timer whose value show the transitive dependency on initiator and direct dependent on other processes to 

which the process send at least one message.

B. The protocol

1. Action taken when Pi  send a computation message to Pj  

if (sndi[j] = =0)

{

sndi[j] =1;

send (Pi, msg, csni, chkpt_timer, init);

}

else

{

send (Pi, msg, csni , chkpt_timer, null);

}

2. Action for the initiator pj 

Take a local checkpoint;



www.ijraset.com Vol. 2 Issue IV, April 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E

AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 105

csni          csni+1; // Increment Checkpoint sequence number

chkp_timer = getTime () + T  // Set first checkpoint time using getTime () & checkpt period T

time = getTime ();       // Initialize time using MSS local time

setTimer (createNewChkp, Chkp_timer); // set timer based on createchkp ( )

Intrvl = chkpTimer - MD;                                    // Initiator set the interval to synchronize process 

send chkpt_request message (msg, csni, chkpt_timer, init,intervl) to local MSS; // MD = maximum 

//deviation฀(D฀+฀2Tρ฀+฀tdmax)

3. Action at Local MSS of initiator (MSSinit):

MSSckpt_timer                T;                    //  set MSSckpt_timer  T;

Check the dependency vector DVj [];

if (DVj [k] = = 1)

{ 

for (i=1; i<= n; i++)

{

send (msg, chkpt_timer, intervl, csnj, init // Send message to other MSSs or processes

}

increment checkpoint;     // When local timer expire Take a checkpoint

}

4. Action executed at MSSk

recv (msg, csni, chkpt_timer, intervl, init); // Receive message from initiator MSS

if (recv_csn<=csni[j])                            // Comparison with received checkpoint sequence number

{

send the message to process;

exit ();

}

else

{

csni [j]           recv_csn; //Set received checkpoint sequence number as current sequence no.

}

upon receiving message from MSSinit:

for฀each฀i฀such฀that฀Pi฀Є฀cellk
receiveMsg (Pj, recv_csn, chkp_timerj, intervl msg);

if ((csni ==  recv_csn) &&(chkp_timer > chkp_timerj))  // Comparison with received checkpoint      

{                                                                                    // csn and timer

resetTimer (chkp_timerj);

send recvi to MSSinit;         //Acknowledgement sent back to MSS initiator

}

else if (csni < recv_csn)    // Orphan message condition

{

csni           recv_csn;       //Set received checkpoint sequence number as current sequence no.

recvi[j]         1;

resetTimer (chkp_timerj);

send recvi to MSSinit;       //  Acknowledgement sent back to MSS initiator

}

5. Action at process Pi   when timeout event is triggered for chkpt interval:

Createchkpt (); // Take checkpoint when local timer get expires 

If (DVi [] = = 1)    //Pi finds its own dependent vector

{  



www.ijraset.com Vol. 2 Issue IV, April 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E

AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 106

Send (msg, schkpt_timer, csni)    // Send secondary checkpt timer and seq.  no. with  msg.

}                               

6. Any process Pk

if (Pk receives a  msg with pchkpt_timer from initiator)

{ 

chkp_timer = time + interval - tdmin ; // Set checkpoint timer using checkpoint interval  

setTimer (createchkp, chkp_timer)             // Initiate timers using checkpoint timer                                               

createchkpt ( );

if (DVk [] = = 0)   // Check the DV to send the checkpoint timer to dependent processes

{                                                                                                        

increment csni;

process the message;

continue normal operation;

} 

else

{

send (msg, chkp_timer, csnk);

increment csni;

process the message;

continue normal operation;

}

}

else if (Pk receives a msg with schkpt_timer ) 

{ 

if (Pk has already participated in primary checkpoint) //   Processes already participated in

{                                          // checkpointing algorithm will not take secondary checkpoint

process the message;  

continue normal operation;

}

else

{

schkp_timer = time + chkp_timer - tdmin;      // Computation of secondary checkpoint timer

setTimer (createchkp, schkp_timer);             // and accordingly set two timers

createchkp ();

if (DVk[ ] = = 0 )

{

increment csni;

process the message;

continue normal operation;

}

else

{

schkp_timer = time + chkp_timer - tdmin;

setTimer (createchkp, schkp_timer);   

send (msg, schkpt_timer, csnk);

increment csni;

process the message;

operation;

}

}



www.ijraset.com Vol. 2 Issue IV, April 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E

AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 107

}

7. Procedure createchkp ( )

SaveProcessState ( );

k = k + 1;

chkp_timer = chkp_timer + T;

setTimer (createChkp ( ), chkp_timer);

if฀((D+2ρ฀(k-1) T – tdmin) > (getTime () - (chkp_time-T))) // Call resy procedure                                             

{                                                        

RequestResyncTimers ();                     // When blocking time greater than checkpoint interval

SendqueuedMessages ();                                                                                   // store in queue.

C. Working Example

Consider the distributed system as shown in Fig. 2 Assume 

that process P2 initiates the checkpoint algorithm. First 

process P2 takes its permanent checkpoint C2,1 when the 

timer expires. P2 set the timer for other processes and define a 

time interval before the checkpoint creation time during which 

processes are not allowed to send messages. The extent of the 

interval is proportional to the maximum message delivery 

time.P2 send the checkpoint request to its own MSS. MSS set 

its checkpoint timer and then check its dependency vector 

DV2[ ] which is {1,0,1,1,0,0,0}. This means that P2 has 

received at least one message from processes P1,P3,P4 and P2 

has already taken its checkpoint C2,1 these messages can 

become orphan if  P1,P3,P4 do not take checkpoints. 

Therefore P2 send interval to P1, P3, P4 to set their timer and 

when the time expires take checkpoint. 

Eventually processes P7 also receive the secondary timer 

from process P5. P7 First compare its current checkpoint 

sequence number with received checkpoint sequence number 

which is also 2 It finds that its current checkpoint sequence 

number is equal to the received checkpoint sequence number. 

Hence P7 discards it as it already takes its checkpoint for the 

current execution of the algorithm. In the example if there was 

no such piggyback message sent by process P4 then P7 would 

receive the checkpoint timer and set its own checkpoint timer 

and take checkpoint when its timer expires. Observe that 

proposed algorithm is nonblocking. Consider the following 

situation where suppose that no message was sent by process 

P7 to any process at all. However assume that it receives the 

piggyback message from P4 and take checkpoint then it 

process the message. This represent the consistent state of 

process P7 This means that process P7 would start 

resynchronization from C7,1 rather than C7,0 after system 

recovery from failure.

D. Proof of correctness

Theorm 1: Proposed Algorithm Non- blocking produces a 

consistent global state of the system.

Proof: Firstly, the initiator process pi identifies all the 

application messages received from different processes that 

might become orphan if it takes a checkpoint by looking at its   

dependency vector. (a) The initiator then sends primary 

checkpoint timer with computation message to all dependent 

processes. On time expire all dependent processes takes their 

respective checkpoints. Hence any application message 

received by pi cannot be an orphan and also the process make 

sure  from which it receives messages also take checkpoint so 

that there are no orphan messages that it has received (b) As 

the timer are not well synchronized. The process can 

piggyback the checkpoint number with computation message. 

Hence such a message cannot be an orphan. Hence the 

algorithm generates a consistent global state of the system.

Theorm 2: Number of processes take checkpoint is 

minimum.

Proof: A process takes checkpoint if and only if it is the 

initiator, or it receives either a primary checkpoint timer or 

secondary checkpoint timer or a piggyback application 

message. This means that except these condition other 

processes does not take a checkpoint. Hence, the proof. 

Theorm 3: Avalanche Effect does not occur in proposed 

approach.

Proof: Consider the Following situation: suppose process pi 

initiate the synchronous time based checkpointing scheme. It 

takes a checkpoint. Check the dependency vector and send the 

primary checkpoint timer to dependent processes. Suppose pj 

receives the primary 



www.ijraset.com Vol. 2 Issue IV, April 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E

AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 108

Fig. Working example of proposed scheme

V. PERFORMANCE ANALYSIS

The performance analysis of proposed algorithms is made on the basis of blocking time, synchronization message overhead, 

number of processes required to checkpoint, piggybacked information on to computation messages Table 1. Detailed 

performance฀analysis฀is฀explained฀in฀[13.]฀Let’s฀the฀following฀notations฀are฀used:



www.ijraset.com Vol. 2 Issue IV, April 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E

AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 109

Nmss:

Nmh:

Nmin:

Nmut:

Nind:

N:

Cwired:

Cwireless:

Nbroad:

Tch:

Number of MSSs.

Number of MHs.

Number of minimum processes required to take checkpoints.

Number of useless mutable checkpoints.

Number of useless induced checkpoints.

Total number of Processes.

Cost of sending message from MH to its local MSS (or vice versa).

The cost of sending message between processes.

The cost of broadcasting a message to all processes in the system.

Average delay to save a checkpoint on the stable storage. It also includes the  time to transfer the checkpoint 

from an MH to its local MSS.

Algorithm/ Parameter Mutable[1] Non Intrusive [2] CCUML 

[3]

Neves-

Fuches [7]

C.Lin, Szu 

chi [10]

Proposed 

protocol

Cost/Overhead 2*Nmin*

Cwireless + 

min(Nmin* 

Cwireless, Nbroad

)

N* Cwireless +

2*Nmin* Cwireless + 

2* Nbroad

N * Cwireless 

+ 2* Nbroad

σ฀ +฀ 2ρMHT 

tdmin

(N-Nmin)฀ ×฀
(Cwired 

+Cwireless)      

+฀N฀×Cwired

Nmin* Cwireless

Useless checkpoint Present Nil Nil Yes Yes Nil

Non-Blocking Yes Yes Yes Yes Yes Yes

Number of checkpoints Nmin Nmin N N Nmin Nmin 

Output Commit Nmin *Tch Nmin*Tch N*Tch N* Tch Nmin *Tch Nmin *Tch

VI. CONCLUSION

In the proposed protocol first the initiator sends the 

control messages to minimum number of processes that need 

to take a checkpoint each. The cost for this is Nmin* 

Cwireled. The  protocol uses time to indirectly synchronise 

the processes, and ensure the consistent and recoverability 

during fault. No control messages are used between processes. 

Some control messages are being sent between processes to 

local MSS. It definitely offers much better bandwidth 

utilization and face minimum number of interrupt.  Frequently 

changing the network of MHs does not affect to the protocol 

as it takes soft as well as hard checkpoints to adapt the 

behaviour of system. Soft checkpoint are used in most cases to 

reduce overheads and after sometimes hard checkpoints taken 

to guarantee that permanent failures can be tolerated. The 

number of checkpoints used in the algorithm is balanced and 

the number of useless checkpoint is nil which offer better 

utilization฀of฀the฀mobile฀host’s฀limited memory. 

REFERENCES

[1] Guohong฀ Cao฀ and฀ Mukesh฀ Singhal,฀ “Mutable฀
Checkpoints: a new checkpointing approach for Mobile 

Computing฀Systems”,฀ IEEE฀Transaction฀on฀Parallel฀and฀

TABLE 1 Performance and comparisons of Rollback recovery Algorithms



www.ijraset.com Vol. 2 Issue IV, April 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E

AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 110

Distributed Systems, vol. 12, no. 2, pp. 157-172, 

February 2001.

[2] Parveen Kumar, Lalit Kumar, R K Chauhan, V K Gupta,  

“A฀ non-intrusive minimum process synchronous 

checkpointing฀ protocol฀ for฀mobile฀ distributed฀ systems”,฀
Proceedings of IEEE ICPWC-2005, IEEE International 

Conference on Personal Wireless Communications, pp 

491-495, January 2005, New Delhi.

[3] S.Neogy,฀A.Sinha,฀P.K.Das,฀ “CCUML:฀a฀ checkpointing฀
protocol฀ for฀ distributed฀ system฀ processes”,฀ TENCON฀
2004. 2004 IEEE Regions 10 conference vol. B. no.2, pp 

553-556, November 2004, Thailand.

[4] J.L.Kim฀ and฀ T.Park.฀ “An฀ efficient฀ protocol฀ for฀
checkpointing฀ recovery฀ in฀ Distributed฀ Systems”฀ IEEE฀
Transaction on Parallel and Distributed Systems, 4(8): 

pp. 955-960, Aug 1993.

[5] Nuno฀ Neves฀ and฀ W.฀ Kent฀ Fuchs.฀ “Adaptive฀ Recovery฀
for฀ Mobile฀ Environments”,฀ in฀ proceeding฀ IEEE High-

Assurance Systems Engineering Workshop, October 21-

22, 1996, pp.134-141.

[6] C.฀Lin,฀ S.฀Wang,฀ and฀S.฀Kuo,฀ “An฀efficient฀ time-based 

checkpointing protocol for mobile computing systems 

over฀wide฀area฀networks,”฀in฀Lecture฀Notes฀in฀Computer฀
Science 2400, Euro-Par 2002, Springer-Verlag, 2002, pp. 

978–982. Also in Mobile Networks and Applications, 

2003, vo. 8, no. 6, pp. 687–697.

[7] N.Neves,฀ W.K.Fuchs,฀ “Using฀ time฀ to฀ improve฀ the฀
performance฀ of฀ coordinated฀ checkpointing,”฀ In:฀
Proceedings of 2nd IEEE International Computer 

Performance and Dependability Symposium, Urbana-

Champaign, USA, 1996, pp.282 –291.

[8] D.Manivannan฀ and฀ M.Singhal,฀ “A฀ low-overhead 

recovery technique using quasi- synchronous 

checkpointing,”฀ Proc.฀ 16th฀ Int.฀ Conf.฀ on฀ Distributed฀
Computing System, 1996, pp.100 -107.

[9] M.฀ Chaoguang,฀ Z.฀ Yunlong,฀ and฀ Y.฀ Wenbin,฀ “A฀ two-
phase time-based฀ consistent฀ checkpointing฀ strategy,”฀ in฀
Proc.฀ ITNG’06฀ 3rd฀ IEEE฀ International฀ Conference฀ on฀
Information Technology: New Generations, April 10-12, 

2006, pp. 518–523.

[10] C. Lin, S. Wang,฀ and฀ S.฀ Kuo,฀ “A฀ Low฀ Overhead฀
Checkpointing฀Protocol฀ for฀Mobile฀Computing฀System”฀
in Proc of the 2002 IEEE Pacific Rim International 

Symposium฀on฀dependable฀computing฀(PRDC’02).

[11] Sourav Basu, S. Palchaudhuri, S. Podder, M. 

Chakrabarty”,฀A฀Checkpointing and Recovery Algorithm 

Based on Location Distance, Handoff and Stationary      

Checkpoints฀ for฀ Mobile฀ Computing฀ Systems”,฀
International Conference on Advances in Recent 

Technologies in Communication and Computing pp 58-

62,27-28 October 2009 .

[12] Jangra Surender, Sejwal Arvind, Kumar Anil, Sangwan 

Yashwant฀ “Low฀ Overhead฀ Time฀ Coordinated฀
Checkpointing Algorithm for Mobile Distributed 

Systems”,฀ Published฀ by฀ Springer฀ in฀ Lecture฀ Notes฀ in฀
Electrical Engineering ,Volume 131 , Page no. 173-182.

[13] Surender Kumar, R.K.Chauhan and Parveen Kumar, 

“Designing฀ and฀ Performance฀ Analysis฀ of฀ Coordinated฀
Checkpointing Algorithms for Mobile Distributed 

Systems”,฀ International฀ Journal฀ of฀ Distributed฀ and฀
Parallel Systems [IJDPS] (AIRCC France), Vol.1, No.1, 

pp. 61-80, Sept. 2010. 



 


