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Abstract— The primary effort of this research paper is the development of an unstructured, cell-based algorithm to solve the 
inviscid Euler equations. Since the convective terms contain many non-linear, and since a proper discritization of them is 
essential, effort is first spent creating an accurate solver for the Euler equations. For any CFD analysis using codes, it is 
expected to do the validation with available analytical and experimental data. For that, the results obtained from the present 
solver are compared with the theoretical ones in hypersonic flow. The in viscid code is validated for the following standard cases.   
Keywords— Normal shock, Euler equations, Finite Volume Method, Van Leer Flux Splitting schemes. 

I. INTRODUCTION 
Computational fluid dynamics is a mature and sophisticated technology. It provides a qualitative (and sometimes even quantitative) 
prediction of fluid flows by means of mathematical modeling (partial differential equations), numerical methods (discretization and 
solution techniques) and software tools (solvers, pre- and post processing utilities). The fundamental basis of any CFD problem is a 
governing equation which is Navier-Stokes equations in our case, which constitute a system of second-order nonlinear partial 
differential equations. These equations can be simplified by removing terms describing dissipation to yield the Euler equation. 
A shock wave is a special kind of pressure wave with steep pressure rise. It can be described as “a compression wave front in a 
supersonic flow field and flow across the wavefront results in abrupt change of fluid properties”, i.e. across a shock there is always 
an extremely rapid rise in pressure, temperature and density of the flow. In supersonic flows, expansion is achieved through an 
expansion fan. A shock wave travels through most media at a higher speed than an ordinary wave. Shock wave is an irreversible 
process; the kinetic energy possessed by the incoming gas is utilized for compressing the gas across the wave. The shock wave may 
be classified as follows: a) Stationary shock wave b)Moving shock wave.  
Normal shock: The portion of a shock wave which is perpendicular to the free stream is called the normal shock. Normal shock 
involved one dimensional flow in which the flow properties vary only with one coordinate direction. 

 

Fig. 1 Flow across a normal shock wave 

Stationary shock wave: a shock wave is stationary when the gas in which it propagates travels at the same speed equal to that of 
shock, but in opposite direction. 
Moving shock wave: Moving shocks are usually generated by the interaction of two bodies of gas at different pressure, with a shock 
wave propagating into the lower pressure gas, and an expansion wave propagating into the higher pressure gas. 
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The calculation of normal shock property on flow fields obviously requires thermodynamic and chemical relation which includes 
the real gas effects and the reactions and products. Anderson [1] carried out a simplified air model analysis, consisting of normal 
shock property calculation. The use of simplified air model enables us to show the basic features of hypersonic flow. 

II. GOVERNING EQUATIONS 
Considering a rectangular control volume passing through the shock perpendicular to the flow, we can derive the continuity, 
momentum and energy equation. The fundamental flow equations, namely, the equation of continuity, momentum equation and 
energy equation can apply across a shock wave. Since there is an increase in entropy across the shock wave, the isentropic flow 
assumptions are not applicable, but changes assumed to take place adiabatically across the shock wave [2]. 
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Equations are represented as continuity, momentum and energy equation respectively. Where q is the heat added per unit mass and 
h e pv  is, by definition enthalpy. Now in order to find out the properties behind the shock wave we make use of above 
equations.  
In our research work has been confined to the solution procedures for the inviscid flow and the governing equations are known as 
the Euler equations. Euler equations are first order system of non-linear coupled equations, which can be expressed in various forms 
such as conservation form and primitive variable form. Conservation form of the equations is essential in order to compute correctly 
the propagation speed and the intensity of discontinuity, such as contact discontinuities or shocks that can occur in inviscid flows. 
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The Euler equations governing the 2D flow [3] in the absence of body forces with species transport equation in the conservative and 
differential form are, 
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In the above versions of formulations, the total specific energy, E=e+0. 5 (u2+v2) the total specific enthalpy    H=h+0. 5 (u2+v2), is 
the mass fraction of the species given by mi=ρi /ρ. This thesis considers a solution to unsteady state Euler  
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III. NUMERICAL METHOD 

A. Finite Volume Method Formulation 
The basic idea of a FVM is to satisfy the integral form of the conservation laws to some degree of approximation for each of many 
adjacent control volumes which cover the domain of interest.     
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The average value of U in a cell with volume V is 
1
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Eq. 3.1 can be written as  
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U is the average value of U over the entire control volume, F


is the flux vector and n


 is the unit normal to the surface. 
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, is the total inviscid flux, upon integrating the inviscid flux over the faces of kth control volume the above 
equation becomes   
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For the 2-D axi-symmetric problems the finite volume formulation is given by   
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B. Discretisation Schemes 
In computational fluid dynamics discretisation of inviscid or convective fluxes is the critical part of Euler solver. One of the 
methods mentioned below is generally seen in the literature for computation of inviscid or convective fluxes- 
Flux vector splitting scheme 
Flux difference splitting scheme 
Total Variation Diminishing (TVD) scheme 
Fluctuation splitting scheme 
In the present investigations Van-Leer scheme from the family of flux vector splitting schemes is preferred for present studies. The 
idea behind the flux vector splitting schemes is to divide the flux vector into positive and negative components. 

C. Flux Vector Splitting Scheme 
There are two class of flux vector splitting schemes, one class of flux vector scheme developed by Steger and Warming and Van-
Leer which decomposes the vector of convective fluxes into two parts based on the sign of characteristics variables. The second 
class of flux vector splitting scheme developed by Liou and steffen [4] into convective and pressure part. Scheme like AUSM 
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developed by Steger J L [5] belongs to the second class of the Flux vector splitting scheme. Advantages of the Flux vector scheme 
includes with a little or moderate increase in numerical effort gives better resolution of shocks. Also this is well suited for implicit 
methods where the computation of steady state solution is of great importance. Main importance is that the Flux vector schemes can 
be easily extended to real gas flow. 

D. Van-Leer Scheme 
Van Leer flux vector splitting scheme is based on the characteristics decomposition of convective fluxes. He splits the convective 
flux in to positive and negative part based on the normal Mach number to the face of the control volume. 
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velocity, given by, x yu un vn   and c is the speed of the sound. The values of the flow variables , ,u v  and p are 

respectively have to be interpolated to the faces of the control volume. Then the positive fluxes are computed with left state and 
negative fluxes are computed with right state. The advection Mach number is given by  
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The mach numbers LM and RM  are computed using the left and right state from the equation          
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In the case of subsonic flow ( M

<1) the positive and negative flux part are given by  
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The mass and energy flux components are defined as 
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For supersonic flow  1M  fluxes are computed as 
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VanLeer flux vector splitting scheme performs very well in the case of Euler equations. But for viscous flow it smears out the 
boundary layer and also gives inaccurate stagnation and wall temperatures.  

E. Boundary Conditions 
In numerical simulation only a part of real physical domain is considered, this may lead to artificial boundaries were we need to 
specify the values of physical quantities To get an accurate numerical solution proper and correct implementation of boundary 
condition is necessary. Improper implementation of the boundary condition may lead to instabilities in the solution and lead to 
erroneous numerical result. Therefore one should give utmost care in selecting and implementing the boundary conditions. For 2-D 
inviscid flow problems the commonly encountered boundary conditions are 
Inviscid or slip wall 
Pressure extrapolation boundary condition 
Supersonic inlet and outlet

       
 

F. Evaluation Of Gradients 
Gradients are needed not only for the constructing flow variables at the cell faces but also required for computing diffusion terms 
and velocity derivatives. The gradient U  of a given variable U  is used to discretises the convection and diffusion terms in the 
flow conservation equations. Gradients can be computed using the following methods 
Green-Gauss Cell- Based 
Green-Gauss Node-Based 
Least Squares Cell-Based 

G. Algorithm And Description About The Development Of In-House Solver  
A brief description about the algorithm of solver is planning to discuss. The flow chart of the algorithm is as shown in Fig 2. Once 
the preprocessing is completed the primitive variables , , . ,u v T e and conservative variables , , ,u v e    are initialized in all 
cell centroids .Then the boundary conditions are initialized in the all boundary face centroids based upon the boundary type. Inlet 
boundary conditions are specified as same as that of free stream conditions. The outlet boundary conditions are extrapolated from 
the interior cell centroid. For inviscid wall boundary condition ghost cell approach is used for current solver. Intilization of the 
boundary condition is carried out by running loop over all the faces.  
For a particular boundary face if its left cell is not existing flow variables are extrapolated to that face centroid from the right cell 
centroid and if its right cell is not existing flow variables are extrapolated to face centroid from its left cell centroid. For interior 
faces whose left cell and right cell exists, the average of the cell centroid values are extrapolated to face. Also for the inlet and outlet 
boundaries the mass, momentum and energy fluxes are directly specified on the boundary faces. The fluxes for the inviscid 
boundary faces and interior faces are computed from the upwind schemes. But upwind schemes required left and right state of the 
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flow variables at faces. Residuals are calculated from the relation   21n n

nc
    and it is being normalized by dividing the residual 

calculated from the first iteration. 

 
Fig. 2 Algorithm of the in-house solver 

                                                                          
 

IV. RESULT AND DISCUSSION 
 
The objective of this research paper is to discuss the results obtained from the present solver in comparison with the theories in 
hypersonic flow and with the standard Normal shock theory. Various test cases used to validate the code is planar flow past a 
cylinder. In this test case mentioned above the present solver results are validated across various theories in hypersonic flow theory.  

A. 2-D Planar Flow Past A Cylinder 
The inviscid flow past cylinder of radius 30 mm has been investigated for Mach numbers in the range 8.0. The fluid domain 
geometry and the corresponding mesh are shown in the Fig 3. The computational grid consists of 2000 cells. The important flow 
features of flow past a sphere consists of a bow shock wave detached from the body, which is a normal shock at the nose becoming 
weak downstream. Behind the normal portions of the shock wave flow is subsonic which during expansion becomes supersonic over 
the cylinder. Thus the flow in the shock layer is a mixed subsonic supersonic flow as seen in the typical Mach contour Fig 5. Also 
various contours have been seen via simulation for the better understanding of Normal shock.  Since normal shock exists at the nose 
of the cylinder, property relations obtained from the solver has been compared with the normal shock relations [6] for 1.4  as 
shown in the Table 2.  

 B. Formulation Of Parameters 
The following relations are to be used for calculation of property behind the normal shock. 
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Fig. 3 Computational domain for flow past cylinder 

 
Table 1 Free stream condition for Cylinders 

 

Table 2   Comparison of various parameters across shock (cylinder) 

  
 

 
Fig. 4 Density contours (M=8) 
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Fig.5 Mach contours (M=8) 

 
Fig. 6 Temperature Contour M=8 in Kelvin 

   
Fig.7 Pressure Contour M=8 in Pascal. 

V. CONCLUSION 

An unstructured finite volume solver for high speed inviscid compressible flows for 2-D and 2-D axi-symmetric configurations has 
been successfully developed. Results obtained for all the test cases are in good agreement with the analytical results. 

 



www.ijraset.com                                                                                                                 Volume 3 Issue X, October 2015 
IC Value: 13.98                                                                                                                  ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET 2015: All Rights are Reserved 
425 

REFERENCES 

[1] Anderson, J. D. (1989). Hypersonic and High Temperature Gas Dynamics. McGraw-Hill Inc. 
[2] Blazek, J. (2001). Computational Fluid    Dynamics Principal and Applications. Eselvier. 
[3] Venkatakrishnan V (1995), Convergence to steady state solutions of the Euler equations on Unstructured grids with Limiters, Journal of computational physics 

118,120-13.  
[4] Liou, M. S. and C. J. Steffen (1999). A New Flux Splitting Scheme. Journal of Computational Physics 107, 23-39. 
[5] Steger J L and Warming R F (1981), Flux vector splitting of inviscid gas dynamic equations with application to Finite difference methods, Journal of 

computational physics, 40, pp 263-293. 
[6] Anderson, J. D. Jr. (2005), Fundamentals of Aerodynamics. McGraw-Hill Inc.  
 
 
 
 
 
 
 
 
 
 
 
 



 


