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Abstract— In this paper, a comprehensive review work is carried out on the computation of band structure and density of 
states of one-dimension photonic crystal, and propagation of normal and polarized electromagnetic wave inside the 
structure. Different numerical approaches are made by eminent researchers to compute the first Brillouin zone for 
understanding the band diagram, and corresponding density of states. Plane wave expansion method is explained in detail, 
as it yields the most accurate result comparing all the numerical techniques. A brief mathematical model is also presented to
study the wave propagation, and a few applications are mentioned where the essential characteristics can be obtained from 
the calculation of these fundamental properties. This paper aims to capture the important and significant developments 
which took place in the field of photonics for the last two decades and present a n overall technical review on that matter. 
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I. INTRODUCTION

Photonic crystals can generally be regarded as an optical 
media with spatially periodic properties [1]. However, this 
definition is too general and too vague to be used in almost all 
possible contexts and there have been a considerable amount 
of debate about the conditions under which it is suitable to use 
the term. However a more formal definition can be given as, 
photonic crystals are periodic optical nanostructures that 
affect the motion of photons in much the same way that ionic 
lattices affect electrons in solids [2]. They are synthetic 
crystals that can manipulate or be sensitized to respond to 
specific wavelengths of light. Its development suggests the 
possibility of increased miniaturization and efficiency of 
computing components and other technologies.

The year 1987 was significant, as in that very year two 
seminal papers published in the same volume of Physical 
Review Letters laid the foundation of the field of photonics. 
Still today the interest of the researchers in the field of 
“photonic crystal”s has been incessantly growing since then. 
The number of papers coming out each year is so high that it 
becomes very difficult to keep track of even the most 
significant ones. However long before the usage of the term 

“photonic crystals” was common; a significant amount of 
work was already done in the field. In 1887, Lord Rayleigh 
[3] laid the foundation of what we know today as a 1D 
photonic crystal. However for nearly 100 years after that this 
field was lying dormant until the year 1987. In that very year,
both Yablonovitch and John independently published two 
very similar papers. Yablonovitch’s main motivation in his 
paper had been to   engineer a crystal’s density of states, to 
control the spontaneous emission of materials embedded 
within the crystal [4]; in comparison to that John’s idea was to 
use crystals to affect the localization and control of light. In 
spite of such differences, both the papers addressed the 
engineering of a structured material exhibiting ranges of 
frequencies at which the propagation of electromagnetic 
waves should not be allowed i.e. the so called band gaps and 
their employment in the emission control of optically active 
materials [4].

Rudziński [5] was one of first person who calculated the 
density of states of a defected photonic crystal by analytical 
method. On similar lines, Kano [6] calculated DOS for 
anisotropic 3D photonic crystal for thermally pumped 
terahertz emission. Boundary effects on DOS are computed in 
[7] using Green’s function. Dispersion relation of an N-period 
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crystal was theoretically investigated by Dios-Leyva [8] and 
compared with the result of an infinite one for finite and large 
values of unit cells. Mode spectrum is also calculated in [5], 
[8] for 1D structure by several workers. Scotognella [9] 
suggested that 1D PC with suitable material composition can 
be used as DFB laser. In addition to such notable work the 
authors also studied the density of states profile in one-
dimensional photonic structures for different both p- and s-
polarized wave conditions for both conventional material 
compositions as well as for semiconductor heterostructure 
based material compositions[10],[11].

On similar lines as in the case of DOS, W. M. Robertson et 
al. [12] studied the photonic band structure in a 2D dielectric 
array using the coherent microwave transient spectroscopy 
technique.  Tip et al. [13] analyzed the band structure of 
absorptive dielectric photonic crystals and investigated them. 
In their result, the frequency-dependent electric permeability 
ε(x,ω) satisfied certain analyticity requirements as a function 
of frequency, they showed that no band gaps exist in 
frequency regions where absorption takes place, i.e. where 
ε(x,ω) has a non-zero imaginary part. Bandgap of two 
dimensional photonic crystals had also previously been 
studied by varying column roundness by Hillebrand [14] using 
plane-wave expansion method. A. Huttunen, and P. Törmä, 
[15] both presented a method for calculating band structures 
for one-dimensional Kerr nonlinear photonic crystals, which 
exhibit an optical switching function. The band structure 
showed the allowed modes for the nonlinear photonic crystal 
as a function of the magnitude of the nonlinearity. Recently, 
finite-difference-time-domain method was used to analyze the 
forbidden region of photonic crystal with different geometries 
[16]. Zhao calculated the width of bandgap [17] using Bragg’s 
principle of reflection. Men optimized the computational 
problem using semi-definite programming and subspace 
methods [18]. Evolutionary algorithm [20] and level-set 
method [19] have also been used for design of large bandgap 
crystal.

Pochi Yeh et al. [21] were among the first group of 
researchers who studied propagation of electromagnetic 
radiation in periodically stratified media. Media of finite, 
semi-infinite, and infinite extent were the subject of treatment 
in their seminal paper in 1977. Min Qui et al. [22] studied the 
wave propagation through a photonic crystal with a triangular 
lattice of air holes realized in the InP-InGaAsP 
heterostructure, theoretically for the transverse magnetic 
modes. S. Foteinopoulou and C. M. Soukoulis [23]

systematically studied a collection of refractive phenomena 
that can possibly occur at the interface of a two-dimensional 
photonic crystal with the use of the wave vector diagram 
formalism. Benoît Lombardet et al. [24] obtained the standard 
representation of an optical field propagating in a photonic 
crystal (PhC) is an electromagnetic Bloch wave. They 
presented a description of these waves based on their Fourier 
transform into a series of electromagnetic plane wave.

This organization of this paper is as follows, in section 2 
we discuss the first and the most fundamental concept in 
photonic crystal i.e. the Density of States profile which lays 
down the foundation for the next section. We follow it up with 
a discussion on the importance of band structure studies and 
methods used in its calculation in section 3. Section 4 
discusses the phenomenon of wave propagation in photonic 
crystals for different incident wave conditions. In section 5 we 
review some of the applications of photonic crystals. Lastly 
we conclude our paper. 

II. DENSITY OF STATES

The photon density of states can be manipulated by using 
periodic structures i.e. photonic crystals with length scales on 
the order of the wavelength of light. Some of these structures 
can completely inhibit the propagation of light of certain 
colors (energies), creating a photonic bandgap: the DOS is 
zero for those photon energies. Other structures inhibit the 
propagation of light only in certain directions to create 
mirrors, waveguides, and cavities. In the nanostructure media 
the concept of Local density of states (LDOS) is often more 
relevant than that of DOS, as the DOS varies considerably 
from point to point. 

We know that the electromagnetic density of states (DOS) 
characterizes the mode density of the fluctuating vacuum 
fields and a thorough knowledge of how to control the DOS 
enables us to engineer various quantum-mechanical processes 
which depend on it. Tuning of the local density of states 
function are very important for fabrication of micro-laser or 
optical memory. Also threshold voltage of a laser may be 
reduced by modifying the DOS function. Hence the accurate 
evaluation of density of states and its dependence on structural 
parameters are very important when the structure is subjected 
to polarized wave incidence.

A. Calculating DOS

The density of states DOS in a medium equals the density 
per unit volume and energy of the number of solutions to 
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Maxwell’s equations. A direct consequence of the existence of 
PBG in the dispersion relation of light through photonic 
crystals is that, for those energy intervals, the density of 
available electromagnetic states in the system is zero. This 
effect can be engineered in photonic crystals and has two 
crucial implications: the first one over the spontaneous 
emission of an emitter placed in a photonic crystal, the second 
is related to light localization in three dimensional systems.

A complete photonic bandgap entails a complete 
suppression of the density of states, a modification of the 
electromagnetic vacuum density of states. A small impurity 
inside a photonic band gap material will give rise to a 
confined mode around this impurity, as in atomic crystals. On 
the other hand, the spontaneous emission of an emitter (atom, 
molecule, quantum dot) can be controlled and tailored by 
modification of the properties of the radiation field. This is 
due to the fact that the total radiative rate Γ of the spontaneous 
emission is given by the well-known Fermi golden rule:

)(
2

)( 





 (1)

where ρ(ω) is the photon density of states. For photons in 
ordinary vacuum (ω = ck),

32

2

)(
c


  (2)

In 1950’s, E. Purcell proposed the enhancement of 
spontaneous emission rates of atoms when they are matched 
in a resonant cavity (the Purcell Effect). A two level system 
will decay spontaneously by interaction with a vacuum 
continuum at a rate proportional to the spectral density of 
modes per volume evaluated at the transition frequency. If a 
local source is placed in a photonic crystal with an 
electromagnetic band gap, which has zero local density of 
states, then the spontaneous emission can be rigorously 
forbidden. Rather, a bound photon-atom state is formed. This 
effect will occur for an emitter placed in the photonic crystal if 
the transition energy lies within a complete PBG. However, if 
the transition energy is near a band edge, where ρ (ω) is 
enhanced, an enhancement of the radiative decay is expected. 
Many different kinds of systems in which the rate of 
spontaneous emission is modified by the environment are 
reported, including microcavities, two and three-dimensional 
photonic crystals to give just a few examples.

Other crucial effect which can be strongly affected by the 
engineered ρ (ω) in a photonic crystal is the, so-called, strong 
or Anderson light localization. The inhibition of light 
propagation was predicted to occur also in the opposite case, 
as an effect of disorder in some random systems. In analogy to 
the phenomenon of Anderson localization originally predicted 
for electrons, if the transport mean free path becomes as short 
as the wavelength of light itself, interference dominates in the 
scattering process. One may assist to the formation of 
localized states, in which light remains trapped, inhibiting 
light transport. Such an effect has been subject of great 
interest in disordered materials and can be reached if:

1)( 22 tloc lc  (3)
where c is the speed of light in vacuum, ρloc(ω) is the 

photon local density of states at frequency ω, and ℓt is the 
transport mean free path for photons, determined by the 
degree of disorder in the medium. For photons in a disorder 
effective medium with refractive index n, this condition 

reduces to the Ioffel-Regel criterion, kℓt(ω) ≃ 1.

However, in a photonic crystal, a decrease of ρ (ω) in the 
band-gap and an enhancement at the band-edge reflects the 
modified phase space available △k for light scattering when 
the photonic modes are concentrated around few k-directions 
or the available scattered states are reduced. This is consistent 
with John’s seminal prediction of a need for a modified Ioffe-
Regel criterion for scattering in photonic crystals, to include 
△k. The very low density of states near the complete band 
gap provides a very favorable scenario for the photon 
localization according to criterion, even when kℓt(ω) ≫ 1. 
Localization in these structures arises from a delicate interplay 
between order and disorder.

III. BAND STRUCTURE

Band structure is one of the most important concepts in 
solid state physics as well as in photonics. It gives the 
photonic levels or modes in ideal crystal structures, which are 
characterized by a Bloch vector k as well as a band index n. 
Here the Bloch vector is an element of the reciprocal space 
and is typically restricted to the first Brillouin zone. We can 
say that photonic band structure computations determine the 
dispersion relation of infinitely extended defect free photonic 
crystals. They also allow one to design photonic crystals that 
exhibit photonic band gaps; accurately interprets 
measurements on photonic crystal samples. As a consequence 
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photonic band structure calculations represent important 
predictive as well as interpretative basis for photonics crystals 
research and therefore lie at the very core of theoretical 
investigations of photonic crystals. More specifically the goal 
of the photonic band structure computations is to find the 
eigenfrequencies as well as eigen-modes of the wave equation 
for the perfect photonic crystal i.e. for an infinitely extended 
periodic array of dielectric material. In essence photonic band 
structure analysis, allows us to engineer the photonic band 
gaps with great accuracy.

Till date numerous methods have been used to calculate the 
photonic band structure with different geometries, such as the 
Plane Wave expansion Method (PWM), Transfer Matrix 
Method (TMM), Finite Difference Time Domain (FDTD) 
method, Order-n spectral method, KKR method and also the 
Bloch wave – MoM method. However not all of these are 
widely used in industry and academia alike for band structure 
studies. With respect to all of these methods, the plane wave 
expansion method (PWM) is the most popular of all the 
methods because it is relatively easy for the people to 
understand the derivation due to its similarity with the 
electron energy band gap which is studied in solid state 
physics.

Besides PWM method, another method namely the TMM 
method is also a popular method which is extensively used in 
one dimensional photonic crystals band structure calculations 
due to its maturity with the results being directly applied in 
the optical industry as well as in academic research. The 
FDTD method is one of the dominant computational 
electrodynamics techniques primarily used in two or three 
dimensional crystal structures. Being a numerical analysis 
technique it is used for finding approximate solutions to the 
associated system of differential equations. Since it is a time-
domain method, FDTD solutions can cover a wide frequency 
range with a single simulation run, and treat nonlinear 
material properties in a natural way. Other methods like the 
Order-n spectral method, KKR method and also the Bloch 
wave – MoM method are nothing but specialized versions of 
the PWM, TMM and FDTD techniques and require much 
deeper understanding of the electromagnetic theory. 

A. Plane Wave Expansion Method

Lying on the fundamental principles of the Bloch function 
and the Fourier transform, the plane wave method (PWM) 
applies to a periodic structure of a photonic crystal in the 
wave vector-space. On solving the Maxwell equations, eigen-

values can be obtained to extract the dispersive feature of the 
photonic energy band. In terms of an approach the way to 
solve, Maxwell equations can be converted into mathematical 
constructs to calculate the eigen-values of the system and to 
obtain the dispersive relation of the energy band of the 

photonic crystal which has a periodic (r) structure that 

change in real space. On the assumption  that both E(r, t) and 
H(r, t) have sine surge modes with respect to real space r and 
time t, then Maxwell equations can be written as:

0)().(.  rEr (4)

0),(.  trB (5)

)()()( 0 rErirH  (6)

)()( 0 rHirE  (7)

where  is the oscillation frequency of the 
electromagnetic field,  (r) is the corresponding dielectric 

constant of the crystal and is a function of space r, also 0 and 

0 denote the dielectric constant and permeability in 

vacuum, respectively. On mathematically solving these 
equations in addition to the consideration of the harmonic 
mode, a simple important equation obtained can be written as:

)()(
)(

1
2

2

rH
C

rH
r

 


 (8)

Using Bloch’s theorem, essentially in the case of an infinite 
periodic photonic crystal, a mode in a periodic structure can 
be expressed as a sum of infinite number of plane waves: 
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where λ=1, 2, also k denotes the wave vector of the plane 

wave, G


is the reciprocal lattice vector , ê is used to denote  

the two unit axis perpendicular to the propagation direction 

Gk


 . ,iGh is used to represent the coefficient of the H 
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component along the axes ê . One thing to note here is that 

( 1̂e , 2ê , Gk


 ) are perpendicular to each other.

Now, using the Fourier transform, the dielectric function 
can also be written as,


G

rGiGr
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where Ω is the unit cell and V is the volume of the unit cell. 

Eventually, Helmholtz’s equation can be expressed in a 
form which is standard eigen-value problem,
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matrix gives us the direction of 

the wave vector propagation when it strikes a lattice site; i.e. 
causes diffraction on hitting a Bragg plane in the first 
Brillouin zone. Certain simplifications exist for both 1D and 
2D case as well as for both in-plane and off-plane light 
propagation.

B. Transfer Matrix Method

This method is based on the principles of the Maxwell 
equations and the boundary conditions; the transfer matrix 
method has been widely used to calculate the light path, 
amplitude and phase spectra of the light wave propagating in a 
one dimensional photonics material, which is also called a 
periodic multi-layered structure. For the one dimensional 
photonic crystal structure consisting of a single layer, the 
transfer matrix M to present the propagation property of the 
light wave can be written as

M=M1.M2.M3……Mj…Mn                                                                      (13)

In the transfer matrix M, transmission as well as the 
reflection intensities of the light, including the amplitude and 

the phase change of the electric field under all incidence 
conditions, can be calculated as functions of the wavelength. 
The TMM has an obvious merit in one dimensional photonic 
crystal band gap calculations because it can be used to 
produce a result with high precision.

C. Finite Difference Time Domain Method

By volumetric sampling of unknown fields, the finite 
difference time domain method imitates the electromagnetic 
wave. In photonic crystals, where the dielectric constant is 
periodically modulated, the electric and magnetic fields of the 
electromagnetic waves, E(r) and H(r), the structure can be 
described by band index n and a wave vector k in irreducible 
Brillouin zone due to Bloch’s theorem. Now, one can find 
eigen-values of the structure for a given periodic boundary 
condition. Random initial condition is used in order to 
compute the eigen-modes of the structure by means of FDTD 
method. Also sufficient amount of time is needed to catch 
enough accuracy. For attaining eigen-modes we choose 
various low-symmetry locations in the unit cell as probes, in 
order to record peaks of the Fourier transform of the complex 
field components in the time domain for a given propagation 
constant. We should notice that, probes at high-symmetry 
locations of the unit cell are not able to detect all eigen-modes.

IV. WAVE PROPAGATION

Among the different photonic bandgap structures, one-
dimensional periodic photonic bandgap microstructures had 
been studied previously by various researchers in the last 
decade due to the advantage of theoretically analysing optical 
characteristics with precision in regard to the lack of 
confinement in two spatial dimensions. Some of the important 
contributions in this regard were made by Foteinopoulou who 
analysed the effect of surface defect on backward wave, and 
showed that surface mode manipulation is possible with 
dispersion. Propagating wave analysis is useful for designing 
four-wave mixing analysis in nonlinear photonic crystal. 
Suitable dielectric material is used to characterize modal 
dispersion in 1D crystal which is why the computation of 
wave profile is much easier in this structure, making it more 
interesting when filter characteristics is considered including 
the effect of polarization of incident light. Variation of wave 
profiles can provide the idea about Brillouin zone of the 
block, which is fundamental in studying the optical 
characteristics like transmittivity, reflectivity of the structure. 
Henceforth, the study is helpful for analysis of usability of 
photonic crystal at optical communication.
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A. Method for Estimating Propagating Modes 

Coupled mode theory is being applied to counter-
propagating waves in a single mode one dimensional periodic 
structure i.e. Bragg grating with a periodic corrugation as 
shown in fig. 1.

Figure 1: Periodic corrugation in one of the core-cladding interfaces. The 
grating is single mode, and we make the assumption that the only significant 
coupling is between counter propagating guided modes

The corrugation is scalar and we don’t expect coupling 
between TE and TM modes, so in the following treatment 
we’ll consider TE modes. We start by describing the field in 
the corrugated structure as a sum of the forward and backward 
propagating modes

 
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where A and B are the amplitudes of the forward and 
backward propagating waves, and u(x) is the mode profile.

The perturbation in the corrugated region is
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We now substitute the expression for the field into this 
expression to get

 
  













)..(exp)()(

)..(exp)()(

)(
2

1
0

2

ztjxuzB

ztjxuzA

xnPpert





(16)

  )(

)(
2

1

.2

..
0

2

xuBeA

eexnP

zj

zjtj
pert







 

(17)

Recalling the fundamental coupled mode equation 
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which then simplifies to
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We will now assume that the corrugation has a square-wave 
shape as indicated in Fig. 1. The general conclusions are not 
dependent on the exact shape, so the following treatment, with 
appropriate adjustments, is valid also for non-square 
corrugations. The square-wave corrugations can be expressed 
as a series in the following form
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By comparing this expression to the above coupled mode 
equations, we realize that only modes that are close to phase 
matched will experience significant coupling. In other words, 
we need only keep terms of the same periodicity. In a range of 
wave vectors, the equations can be simplified to
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zjKAe
dz

dB .2  (25)





  dxxuneCK

zm
j

m )(22
.2

.


(26)

where







m
(27)

Let us check energy conservation in the systems of 
equations we have found for modes in a Bragg grating i.e. 
one-dimensional periodic dielectric array. We start by 
deriving expression for the energies in the forward and 
backward propagating waves. Based on Eq. (14) we can write

zjzj eKBAKeBA

AA
dx

d
A

dz

d

.2**.2*

*2

....

).(

  


(28)

zjzj KeABeKAB

BB
dx

d
B

dz

d

.2*.2**

2

....

).(

  


(29)

The difference between the rates of change in the forward-
propagating and backward- propagating energy is then

0
22  B

dz

d
A

dz

d
(30)

We see that the rate of change in forward-propagating 
energy is exactly balanced by the rate of change in backward-
propagating energy, which is the correct result for loss-less, 
counter-propagating waves.

The set of equations describing the modes of the Bragg 
grating (Eq. 9-13) can now be solved. Assuming that the 
forward propagating mode has an amplitude A0 at z=0, and 
that the backward propagating wave is zero at z=L, we find

   
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coshsinh

)(cosh)(sinh
..
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
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 (31)
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
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where

22  KS (34)

when  >0,this simplifies to

 
 KL

LzK
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cosh

)(cosh
0


 (35)
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
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The expressions we have found for the field amplitudes in 
the periodically corrugated waveguide allow us to calculate 
the reflection and transmission spectra of the Bragg grating. 
For example, the field reflection is simply the ratio of the 
forward propagating and backward propagating wave at the 
input to the Bragg grating:
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which may be written as

 
   SLjSSL

SL
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coshsinh
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V. APPLICATIONS

One dimensional photonic crystal have widespread use in 
thin-film optics with applications ranging from low and high 
reflection coatings on lenses and mirrors to color changing 
paints and inks. The products involving two-dimensional 
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periodic photonic crystals are already available in the form of 
photonic-crystal fibers. Photonic crystal fibres are developed 
on the physics required for the primary purpose of optical 
communication [25], optical nonlinearity [26], which use a 
microscale structure to confine light with radically different 
characteristics. These novel microstructures have already 
replaced conventional optical fiber for efficient 
communication. One- as well as two- dimensional photonic 
crystals have been already been used to construct optical 
waveguides [27], photonic band-edge laser [28], high efficient 
LED [29], filter [30], switches [31], integrated photonics [32], 
sensing [33], high power technology [34], quantum 
information science [35]. The three-dimensional structures are 
still far from commercialization but have the potential to offer 
additional features like optical nonlinearity required for the 
operation of optical transistors used in optical computers, 
when some technological aspects such as manufacturability 
and principal difficulties such as disorder are under control.

VI. CONCLUSIONS

In the last two decades the field of photonics has had such 
rapid development that it is truly quite a cumbersome task to 
touch upon all the major significant developments associated 
with it. We hope that students and researchers alike who are 
new to the world of photonics would benefit from this short 
review and gain a clear insight of the subject. Still today, a lot 
of work needs to be done especially in the area of three 
dimensional photonic crystals and challenges in fabricating 
such structures with precision in the optical regime. Use of 
group theory in photonics is an interesting and active area of 
study from both the theoretical and experimental point of 
view. Similarly, another area of active research is 
semiconductor heterostructure based photonic crystals. 
Tailoring as well as tuning the photonic band gaps with 
precision as well as accuracy is the most important thing 
which anybody working in the field of photonics must keep in 
the back of their mind while designing any of the photonic 
devices. Structuring the material properties to control the flow 
of light has paved way to an alternate dimension altogether 
due to its difference from the classical theory of electronic 
band gap physics. Light has surprised mankind from the very 
beginning and now it’s our turn to see what more surprises 
can light offer; just when we are beginning to modluate it. 
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