

2 V May 2014

www.ijraset.com Vol. 2 Issue V, May 2014

 ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

 Page 8

Clustering of Answers of Keyword Search on
Graph

Jyoti Devi 1, Vinod Saroha 2
1 M.Tech (Network Security),

School of Engineering & Sciences
Sonepat, Haryana, India.

BPS Mahila Vishwavidyalaya, Khanpur Kalan

2 Lecturer in CSE Dept
School of Engineering & Sciences

Sonepat, Haryana, India.
BPS Mahila Vishwavidyalaya, Khanpur Kalan

 Abstract: Keyword search on graph data returns answers that are represented as a set of tree structures. These are referred as
answer-trees. It was observed that when following exhaustive breadth-first search strategy many answers of a user search are
found to have the common set of keyword-nodes and the root-node, but the paths to root-node from keyword nodes are different.
Often thousands of answers get generated with the same set of keyword-nodes and the root-node. However there exist various
kinds of similarities in the result trees. The paper present various techniques to cluster the trees which unable efficient analysis
of the results and one can drive interesting relationships among the answers.

Keywords :- keyword search, hashing, tree clustering, tree edit distance.

I. INTRODUCTION

The distributed keyword search algorithm generates paths from
various keyword-nodes to corresponding root-nodes. The
current brute-force approach first groups these paths based on
the keyword of the target keyword-node, for a root-node, i.e., all
the paths from a root-node to all the keyword-nodes of a
keyword are grouped together. It then takes a cross-product of
these groups of paths, taking one path from each of the
keyword. Each of the result from such a cross-product is
assumed to be a valid answer. Objective of this project is to
summarize the answers-trees based on various configurations,
e.g., common root-node grouping, common root-node and

keyword-node grouping, grouping based on root-node class and
common semantic form of answers etc. This paper will require
choice /design of suitable data-structure as well as design of an
efficient algorithm for answer summarization. Answer
summarization fulfills two main objectives, which are

1. The search algorithm for finding the answers to the keyword
queries takes around 10-15 minutes (for now), however parsing
and enumerating the searched results takes hours. In other
words, the bottleneck is the Enumeration of results rather than
searching the results. It happens because there are thousands of
answers to be parsed and enumerated. However, if we can club
these thousands of answers into different buckets so that similar

www.ijraset.com Vol. 2 Issue V, May 2014

 ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

 Page 9

answers are placed in same bucket and enumerate one
representative answer for each bucket, we would need to
enumerate much less answers. All different answers of same
bucket can be enumerated after clicking the representative
answer of that buckets. This way we can improve the bottleneck
part of the whole procedure of finding and displaying the
answers.

2. User, obviously would not like to see hundreds of answers of
same kind when he is interested in some other kind of answers
to his keyword search query. Through summarized answers he
can easily have a glance to all different kind of answers and
getting detailed answer by clicking on the answer of his interest.
This way we escaped displaying all other answers which is of
not his interest. However, summarizing answer based on
common semantic form will give most informative summarized
answers than all other kind of summarization based on common
root-node, common root node and keyword nodes. It is so,
because the two answer may be completely different but still
they can have common root and common keyword nodes or just
common root node. For example if we search "Rekha Bachhan",
then two different answers can be as follows These two answers
have common root node and common-keyword nodes and still
they are totally different from each other. However if answers
are summarized based on semantic form then the answers which
needed to be clubbed together based on common root-node and
common keyword-nodes will automatically be clubbed because
they will have same form. Also, summarizing based on only
semantic form is also not the best summarization technique.
There might me some answers whose semantic form might
differ only slightly from other answers' form and they should be
clubbed together. Also, there can be some other basis which
might turns out to be better than semantic form technique.
However, for now, we will go for the semantic based
summarization.

II. METHODS

The total number of answer results is very large, say thousands.
Firstly, all these answers are converted to their semantic form

and let's call these new answers Semantic Results Tree. Then we
can have following methods to classify them in already
discussed buckets.

Brute Force Method(Isomorphism)

This is given in Algorithm 1 [3.2.2]. The main drawback of this
algorithm is that it is very expensive in term of time. In worst
case, it does O N comparisons and each comparison is of order
O V, where N is the total number of results and V is the
maximum number of nodes in a result tree. Hence total time
taken by this algorithm is O N2
.

Prime Number Based Summarization

Feature Vectors

In a result tree, each node has some degree. A vector is
generated for each tree which has the degrees of nodes in
increasing order. We call this vector to be feature vector of the
tree. For example, the Feature Vector for following tree would
be [(Rekha,1), (Amitabh,1), (Hema,1), (Sholay,2),(India,2)]

Instead we can also use pre-order, post-order or in-order
ordering of trees to generate Feature Vector.

Prime Keys

We start from a random result tree and assign its root the first
prime number i.e. 2 . Then we do BFS traversal of the tree and
assign increasing distinct prime number. When further other

www.ijraset.com Vol. 2 Issue V, May 2014

 ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

 Page 10

trees are traversed we check if the current node-class has already
been assigned a prime number, if yes then assign it the same
prime number else assign it next distinct prime number. For
example, following are two result trees

First result is

Whose semantic form is given by

Second result is

whose semantic form is given by

Now, when first semantic result tree is traversed, the prime
number assigned are as follows

www.ijraset.com Vol. 2 Issue V, May 2014

 ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

 Page 11

It is to be noted that when some node class had already been
assigned some prime number, it is not assigned again when met
in future rather is assigned the already assigned value to that
node-call. When second tree is traversed, no node is given new
prime number since no new node class is met. Hence each node
in all the result trees is assigned some prime number.

Hashing

We can generate a hash function using the Feature vector and
Prime Keys as follows.

Here FV is a Feature Vector and n is some very larger Prime
Number.

For example hash value of first result tree would be
51.51.51.32.32 = 4500

Hence, this way we can hash each tree to some bucket and
finally we will get similar tree in one bucket. It process every
tree exactly two times. Hence is linear in number of result trees.
However, there is a inherent limitation of this method. If number
of total different node-class in our result trees becomes too large
say of the order of billion then, we will have to use very large
prime numbers. It would force us to use big integer as there will
be very large hash value and it might make the procedure slow.

3.3 MD5-Hashing and Secure Hash Algorithm

Algorithm 2 [3.2.2] gives the outline of this algorithm Every
result tree is first converted to it's semantic tree form and then
the in-order traversal of the tree is written in a document. For
each result tree, there is a document. Here document is nothing

but a string representing in-order traversal of the tree. This
string is then hashed using MD5 Hash function or Secure Hash
Algorithm which will give a hash string as an output. This string
is further hashed using 'djb2' hashing or 'sdbm' hashing which
gives an integer ranging from 1 to 232 .

III. CLUSTERING BASED ON TREE EDIT
DISTANCE

To compute similarity measures we use techniques based in
string edit-distance algorithms. Tree edit distance (TED)
between two trees Ti and Tj is defined as the number of
operations(insertion, deletion and re-labels) required to
transform a Ti to Tj. Let ed(Ti and Tj) define the edit distance.
We compute is using a well known algorithm called Klein's
Algorithm. Then we compute the edit-distance similarity
between two trees.

es(Ti and Tj) = 1-(ed(Ti and Tj)/Number of Nodes in both
trees)

Clustering the Trees

For grouping the sub trees according to their similarity, we use a
clustering-based process we describe in the following lines:

Figure 1: Bottom Up Clustering based on Tree Edit Distance

www.ijraset.com Vol. 2 Issue V, May 2014

 ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

 Page 12

 Let us consider the set t1,.....tn of all the result trees.
 Compute the similarity matrix. This is a n*n matrix

where the (i,j) position (denoted mij) is obtained as
cs(ti and tj), the edit-distance similarity between ti and
tj. We define the column similarity between ti and tj,
denoted cs(ti,tj), as the inverse of the average absolute
error between the columns corresponding to ti and tj in
the similarity matrix (2). Therefore, to consider two sub
trees as similar, the column similarity measure requires
their columns in the similarity matrix to be very
similar. This means two sub trees must have roughly
the same edit-distance similarity with respect to the rest
of sub trees in the set to be considered as similar. We
have found column similarity to be more robust for
estimating similarity between ti and tj in the clustering
process than directly using ed(Ti and Tj).

 Now, we apply bottom-up clustering [3] to group the
subtrees. The basic idea behind this kind of clustering
is to start with one cluster for each element and
successively combine them into groups within which
inter-element similarity is high, collapsing down to as
many groups as desired. The

algorithm is shown in the Figure 1.

Results

We compared the results of Clustering based on Isomorphism
and Clustering based on Tree Edit Distance. The database used
was IMDB which has around 10 Millions tuples. For each
query, 1000 result trees were generated and then clustered using
these two techniques. It can be seen that in some queries no of
clustered returned by isomorphism were very high while TED
approach give good number of clusters in all the queries. Group

2 shows the result of TED-Clustering and Group-1 shows
Isomorphism results.

IV. CONCLUSION

In this paper we provided various techniques to cluster the trees.
Clustering based on Tree Edit Distances and clustering based on
hashing are two viable techniques to cluster the trees.
Isomorphism is both time expensive as well as not that good
strategy for clustering as it doesn't give good results.

V. REFERENCES

1. Manuel Manuel lvarez, Alberto Pan, Using Clustering and
Edit Distance Techniques for Automatic Web Data Extraction

2. Philip Klein, Srikanta Tirthapura, Daniel Sharvit, and Ben
Kimia. A tree- edit-distance algorithm for comparing simple,
closed shapes. In Proceed- ings of the 11th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 696704,
2000.

3. P.N. Klein. Computing the edit-distance between un rooted
ordered trees. In Proceedings of the 6th annual European

www.ijraset.com Vol. 2 Issue V, May 2014

 ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

 Page 13

Symposium on Algorithms (ESA) 1998., pages 91102. Springer-
Verlag, 1998.

4. Arvind Gupta and Naomi Nishimura. Finding largest sub
trees and smallest super trees. Algorithmica,21:183210, 1998.

