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Abstract--Let G(V,E) be a graph. A dominating set is a subset S of V such that every vertex not in S is adjacent to at least one 
vertex in S. The cardinality of a minimum dominating set is called the domination number, (G). A dominating set with  vertices 
is called a -set. Let  denote the number of -sets in G. For a graph G, the splitting graph S(G), is obtained by adding a new 
vertex v corresponding to each vertex v of G and joining v to all vertices which are adjacent to v in G. Here we introduce a new 
type of graphs called minimum domination splitting graphs or simply -splitting graphs. Let G be a graph and let S1, S2,…,S  be 
the -sets in G. The -splitting graph, S(G), of a graph G is the graph obtained from G by adding new vertices w1,w2,…,w and 
joining wi to each vertex in Si where 1  i  . In this paper, we establish some results on -splitting graphs. 
Keywords: Dominating set, domination number, splitting graph, -splitting graph. 
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I. INTRODUCTION 
Throughout this paper, we consider only finite, simple, undirected graphs. For notations and terminology we follow [3]. Let G(V,E) 
be a graph of order n. We denote the cycle on n vertices by Cn, the path of n vertices by Pn, and the complete graph on n vertices by 
Kn. The complete bipartite graph is denoted by Km,n. In a graph G, degree of a vertex v is denoted by d(v). If S is a subset of V, then 
<S> denotes the vertex induced subgraph of G induced by S. For any vertex vV(G), the open neighbourhood N(v) of V(G) is the 
set of all vertices adjacent to v, that is, N(v) ={uV(G) / uvE(G)}, and the closed neighbourhood of v is defined by N[v] = N(v) 

 {v}. Nc(v) = V- N(v) is called the neighbourhood complement. For any set S, N(S) = 
Sv

vN


)( . 

A full vertex of G is a vertex in G which is adjacent to all other vertices of G. A graph G is said to be r-regular if every vertex in G 
is of degree r. For any two integers k and d,  k  d,         a (k,d)- biregular graph is a graph in which every vertex is of degree either 
k or d. For any three integers x, a, and b, x  a  b, a (x,a,b)- triregular graph is a graph in which every vertex is of degree either x 
or a or b. For example, a (2,3)-biregular and a (1,2,6)- triregular graphs are shown in Figure 1.   

 
The distance d(u,v) in G between two vertices u and v is the length of a shortest u-v path in G. The eccentricity e(u), of a vertex u is 
the distance of a farthest vertex from u, and radius rad(G) of G is the minimum eccentricity. The maximum distance between any 

two vertices in G is the diameter of G, denoted by diam(G), that is, diam(G) = 
)(,

max
GVvu 

{d(u,v)}. A vertex u with       e(u) = rad(G) is 

called a central vertex. A graph G for which rad(G) = diam(G) is called a self-centered graph of radius rad(G). Or equivalently, a 
graph is self-centered if all of its vertices are central vertices. For further basic definitions on distance in graphs one can refer [4]. 
Let Hn,n denote the graph with vertex set {v1,v2,…,vn ; u1,u2,…,un} and edge set {viuj /       1  i  n, n-i+1   j  n }. The graph Bm,n  
is the bistar obtained from the stars K1,m and K1,n by joining their central vertices by means of an edge. For example, the graph H4,4 

(2,3)-biregular  (1,2,6)- triregular 

Figure  1 
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and the bistar B4,5  are shown in  Figure 2. 
 

 
The join G   H of the graph G and H is the graph obtained from G   H by joining every vertex of G to each vertex of H by means 
of an edge. The graph Wn = Cn-1  K1 is called the wheel graph on n vertices. The corona GH of two graphs G and H is obtained 

by taking one copy of G and )(GV  copies of H, and by joining each vertex in the ith copy of H to the ith vertex of G, where 1   i  

)(GV  . The corona graph C5 K2 is depicted in Figure 3, for reference,  

 
In a graph G, the process of deleting an edge uv and introducing a new vertex w and the edges uw and vw is called the subdivision 
of the edge uv. A spider is a tree on 2n + 1 vertices obtained by subdividing each edge of a star K1,n. In other words, spider is 
nothing but K1,n ◦ K1. A wounded spider is a graph obtained from subdividing at most n – 1 edges of a star K1,n. The wounded spider 
includes K1, the star K1,n-1. For example, a wounded spider G the graph shown in Figure 4. The cartesian product of two graphs G1 
and G2 is denoted by G1  G2. The graph     K1,m   P2 is called the m-book graph and it is denoted by Bm. For example, the book 
graph B4 is shown in Figure 5. 

 
A dominating set is a subset S of the vertex set V such that every vertex is either in S or adjacent to a vertex in S, that is, such that 
every vertex in V-S is adjacent to at least one vertex in S. The domination number is the number of vertices in a smallest dominating 
set of  G, it is denoted by (G). A dominating set with  elements is called a -set. For example, S1 = {b,d} and S2 = {a,c} are the 
minimum dominating sets of the graph G can be verified in Figure 6. For further results on domination in graphs, one can refer [5].                              

B₄‚₅ 

Figure  2 

H₄‚₄ 

Figure  3 

Figure  4 Figure  5 
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Note that S3 = {a,b,c,d,e,f,g,h} and S4 = {a,b,c,d}, etc., are also dominating sets in G. The concept of splitting graph was introduced 
by Sampath Kumar and Walikar [6]. The splitting graph S(G), is the graph obtained from G, by adding a new vertex w for every 
vertex    v  V(G), and joining w to all vertices of G adjacent to v. For example, a graph G and its splitting graph S(G) are shown in 
Figure 7. 

 
The concept of cosplitting graphs has been recently introduced by Selvam Avadayappan and M. Bhuvaneshwari [1]. Let G be a 
graph with vertex set {v1, v2,…,vn}. The cosplitting graph CS(G) is the graph obtained from G, by adding a new vertex wi for each 
vertex vi and joining wi to all vertices which are not adjacent to vi in G. As an illustration, a graph G and its cosplitting graph CS(G) 
are shown in Figure 8.  

 

a b 

c d 

e 

f 

g 

h 

G 
Figure  6 

Figure  7 
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The concept of -splitting graph has been introduced by Selvam Avadayappan,                M. Bhuvaneshwari and B. Vijaya Lakshmi 
[2]. Let S1,S2,…,S be the maximum independent sets of G. The -splitting graph S(G) of a graph G is a graph obtained from G by 
adding new vertices w1,w2,…,w such that each wi is adjacent to each vertex in Si, for 1  i  . For example, a graph G and its -
splitting graph S(G) are shown in Figure 9. 

 
In this paper, we introduce a new type of splitting graphs called - splitting graphs. Let G be a graph and let  be the number of -
sets in G. Let S1, S2,…,S  be the minimum dominating sets in G. The -splitting graph, S(G), of a graph G is the graph obtained 
from G by adding new vertices w1,w2,…,w and joining wi to  each vertex in Si where 1   i   .  For example, the      - splitting 
graph of P4 is shown in Figure 10.    

. 

Clearly, S1 = {v1,v4}, S2 = {v2,v3}, S3 = {v1,v3}, S4 = {v2,v4} are the -sets in P4, also w1,w2,w3,w4 are newly added vertices in S(P4). 
Here, we discuss a few results on -splitting graphs. In this paper, we independently characterise graphs for which S(G) is a regular, 
biregular, tree, unicyclic graph. We attain bounds for the maximum and  minimum degree of a vertex in S(G). Finally we study the 
distance properties of -splitting graphs. 

II. CHARACTERISATION OF -SPLITTING GRAPHS 
The following facts can be easily verified for -splitting graphs. For a vertex v in S(G), let d*(v) denote the degree of v in S(G). 
Fact 2.1 The newly added vertices {w1,w2,…,w} are independent in S(G), that is, d(wi,wj)  2, for any i, j,  1  i, j  . 
Fact 2.2 d*(wi) = (G), for i, 1   i  . 
Fact 2.3 For any vertex v  V(G), d(v)  d*(v). 
Fact 2.4 Every graph G is an induced subgraph of S(G). Even more G is a proper subgraph of  S(G), since every graph contains at 
least one -set.  
Fact 2.5 The graph having only one full vertex, bistar graph, the graph Hn,n, the path P3k, k  1 and the book graph Bm are some 

v₁ v₂ v₃ v₄ 

G 

v₆ v₅ 

v₁ v₂ v₃ v₄ 

v₆ v₅ w₁ 

w₂ w₃ 

w₄ 
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Figure  9 
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graphs whose -splitting graphs contain exactly one newly added vertex. 
 
Fact 2.6 S(Kn)  KnK1 for any n  1.  
Fact 2.7 S(K1,n)  K1,n+1 for any n  2 . 
Fact 2.8 S(Kn

c)  K1,n  for any n  1. 

The following theorems establish some properties of -splitting graphs. 

Proposition 2.9  For any m  1 and n  1, (Km,n) = 















mn
mn 1
6
2
1

   

Proof  Let V = {u1,u2,…,um ; v1,v2,…,vn} be the vertex set of Km,n. 
Case (i) Suppose m = n =1, then clearly {u1} and {v1} are only the -sets and hence (Km,n) = 2. 
Case (ii) If m = n= 2, then clearly {u1,v1},{u2,v2},{u1,v2},{u2,v1},{u1,u2}and {v1,v2} are the only        -sets in K2,2 and hence (Km,n) 
= 6. 
Case (iii) If m =1 and n  2, then G  K1,n, and therefore {u1} is the only -set. That is, (G) = 1. 
Case (iv) Suppose m = 2 and n > 2. Then {u1,u2} and {uj,vk} 1   j  2, 1  k  n are the -sets of G. Thus (Km,n) = mn+1.   
Case (v) If m  3 and n  3, then clearly {ui,vk} 1  i  m, 1  k  n. Thus (Km,n) = mn.      ■ 

Theorem 2.10  For any n  1, there exists a graph G of order n, such that S(G) is n-regular. 

Proof When n = 1,G  K1, for which S(G)  K2 is the required graph. Therefore assume that      n  2, consider the graph G  Kn   
K c

n 1  with vertex set {v1,v2,…..,vn; u1,u2,…,un-1} with edge set {vivj / 1  i, j  n}. For any i, 1  i  n, clearly {vi, u1,u2,….…, un-1} 

is a -set of G, that is, (G) = n. Hence there are n such -sets in G. Let w1,w2,…,wn be the newly added vertices in S(G). Now for 
any i, j, 1   i   n, 1  j  n-1. Thus d*(vi) = d*(wi) = d*(uj) = n. Hence S(G) is   n-regular. Thus G is the required graph.                          
For example, the graph K3   K2

c and S( K3   K2
c ) which is a 3-regular graph are shown in Figure 11. 

 

Now, consider the star graph K1,n-1, n  3, which is biregular. In addition S(K1,n-1) is also biregular. This shows that there are 
biregular graphs G whose S(G) are also biregular. Some examples are listed below: 
 

v₁  

v₂ v₃ 
u₁ u₂ 

w₁ w₂ w₃ 

S( K₃ ∪ K₂ ) 

Figure  

K₃ ∪ K2  

v₁ 

v₃ v₂ u₁ u₂ 
• • 

if m = 1, n  2                                          
if m = n = 1                                  
if m = n = 2                                  
if m = 2, n > 2                                             
if m  3, n  3. 
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        Graph G  

 
       Degree set of G 

              
     S(G)                                                                              

 
            Degree set of S(G) 

 
      K1,n-1, n 3 
       
           P5  
 
          Bm 
 

 
            {1, n-2} 
 
            {1, 2} 
 
            {2, m+1} 

 
     K1,n  
 
    S(P5) 
 
   S(Bm) 

 
                {1,  (G)+1} 
 

                {2,  (G)+2}   
 
                {2,  (G)+1} 

 
Theorem 2.11 The graph S( Km,n ) is biregular if m = n and S( Km,n ) is triregular if m  n for        m  2. 
Proof  Let V = {v1,v2,…,vm; u1,u2,…,un} be the vertex set of Km,n. 
Case (i) Suppose m = n, and m  3. The graph S(Km,m), then d*(wi) = 2. Also, by Proposition 1,   = m2. Each ui or vi belongs to 
exactly m -sets. Hence d*(ui) = d*(vi) = 2m. Then S(Km,m) is a  ( 2m, 2)-biregular graph when m = n. 

Case (ii)  Let m  n. The graph S(Km,n), then d*(wi) = 2, and  = mn. Each ui belongs to n - sets and each vi belongs to m -sets. 
Then d*(ui) = 2n and d*(vi) = 2m. Hence S( Km,n ) is a ( 2m, 2n, 2)-triregular graph when m  n. Hence the proof.                         
For example, the graph K2,2 and S(K2,2) are shown in Figure 12.  

 

Theorem 2.12  The graph S(G) is a tree if and only if G is one among the following  graphs Kn
c, P2,  












k

i
ni

K
1

,1

 
  Km

c, k  1, ni 

 2, m  1, or 
k

i
ni

K
1

,1


, k   1,  ni   2.  

Proof  Consider a graph G for which S(G) is a tree. Since G is an induced subgraph of S(G), G is acyclic. If G contains only two 
vertices, then obviously G  K2 or K2

c for which S(G)  P4 or P3 respectively. So we assume that G contains at least three vertices. 
Case (i) Suppose G is a tree. Then G contains at most one full vertex. If G contains only one full vertex, then G  K1.n for which 
S(G)  K1,n+1. If G contains no full vertex, then (G) > 1 and thus G contains at least two vertices u and v in any -set S of G. Let w 
be the newly added vertex in S(G), corresponding to S. Now the u-v path together with the edges uw and wv forms a cycle in S(G), 
which is a contradiction to our assumption that S(G) is a tree. Therefore, this case does not arise. 
Case (ii) Let G be a forest. If a -set contains at least two vertices in the same component, then S(G) contains a cycle, which is a 
contradiction. Therefore every component must contain exactly one vertex of each -set of G, which is possible when each 

v₁ v₂ 

u₁ u₂ 

K₂‚

v₂ w₆ v₁ 

u₁ u₂ 

w₅ 
w₄ 

w₃ 

w₂ 

w₁ 

S (K₂‚₂) 

Figure  12 
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component is a star or a trivial graph and hence G  











k

i
ni

K
1

,1

 
  Km

c, k  1, ni  2 and  m  1 or G  
k

i
ni

K
1

,1


, k   1,  ni   2. 

And the converse is obvious.                                                                                                     ■ 

          For example, the graph S 











3

1
3,1

i
K   and  S
















2

1
3,1

i

K    K3
c




  are shown in Figure 13.                 

 
 Let Pk(m,n), where k  2 and m,n  1, be the graph obtained by identifying the centre vertices of the stars K1,m and K1,n at the ends 
of Pk respectively. The graph C3(m1,m2,m3), where mi  0, is obtained from the cycle C3 = v1v2v3v1 by identifying the centre of the 
star K1,m i , at vi of C3, for 1  i  3. For example, the graph P5( 3, 4 ) and C3( 3, 0, 0 ) are shown in Figure 14.  

 

 
Theorem 2.13 The graph S(G) is unicyclic if and only if G is isomorphic to any one of the following graphs: (i) P2   K1,     (ii) K3,     

(iii) Bm,n, m > 1, n > 1,     (iv) Pk(m,n), k = 3, 4 and m,n  1,    (v) Bm,n   Kt
c, m > 1, n > 1, t  1,     (vi) Pk(m,n)   Kt , k = 3, 4 and 

m, n 1, t  1,     (vii) C3(m1,0,0) 
r

p
npK

0
,1

  


s

q

c
nqK

0

 where m1  1. 

Proof  Consider the graph G for which S(G) is unicyclic. Then there arise two cases. 
Case (i) Suppose G is acyclic. Then clearly the cycle contains a newly added vertex w in S(G). Therefore, (G)  1. Let G be a 
connected graph. Then  = 1, that is, G contains exactly one      -set, since every newly added vertex forms a new cycle. In 
particular, (G) = 2 with the -set {u,v}. Let w be the newly added vertex in S(G). Then the (u,v)-path in G together with the newly 
added edges wu and vw forms the unique cycle in S(G) , this is possible only when         G  Bm,n, m > 1, n > 1, Pk(m,n), k = 3, 4 
and  m, n  1. 
 Let G be disconnected. If G has more than one component, with at least one edge, then S(G) has more cycles, which is a 
contradiction to our assumption that S(G) is unicyclic. Hence only one component G1 of G can contain edges and the others are 
isolated vertices. If G1 contains only one edge, then G must be P2   K1. If G1 contains more than one edge, then G1 is isomorphic to 

Bm,n, m > 1, n > 1, Pk(m,n), k = 3,4 and m,n  1 and hence G  Bm,n   Kt
c, m > 1, n > 1, t  1, Pk(m,n)   Kt

c, k = 3, 4 and m, n  1, 
t  1. 
Case (ii) Suppose G is unicyclic. Let G be a connected graph. Then newly added edges cannot be in a cycle. This is possible only 

Figure  13 
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when (G) = 1. This forces that G  K3 or C3(m1,0,0) where      m1  1. 
Let G be disconnected graph. Then (G)  2. Clearly, one of the component of G is unicyclic and the remaining are trees. Since 
every component is connected, by the above argument exactly one vertex of each component belongs to -set of G. Also, the -set 

must be unique to avoid cycles formed by newly added vertices. Such a graph is isomorphic to C3(m1,0,0) 
r

p
npK

0
,1




s

q

c
nqK

0  
where m1  1. And the converse is obvious.                                               ■         
For example, the graphs S(B4,5  K3

c) and S(C3(3, 0, 0)  K1,4  K3
c) are shown in Figure 15. 

 
 
Theorem 2.14  Let G be a graph. Then S(G) has a full vertex if and only if G  Kn

c or H   K1 where H is a graph without a full 
vertex. 
Proof  Let wi be the newly added vertices in S(G) for 1  i  . Let v be a full vertex in S(G).  
Case (i)  Suppose v is a newly added vertex. Since wi’s are all independent in S(G), v is the only newly added vertex. And hence 
V(G) is the only dominating set of G. This is possible only when          G  Kn

c. 
Case (ii)  Let v  V(G). Then v is a full vertex of G. If G has a full vertex u other then v, then there are w1 and w2 corresponding to 
the -sets {u} and {v}. But w1 and w2 are not adjacent. In addition uw2 and vw1 are not the edges in S(G). Thus S(G) contains no 
full vertices, a contradiction. Therefore, G has exactly one full vertex. In other words, G  H   K1 where H has no full vertex. 
Conversely, assume that G  H   K1. The graph S(G) is nothing but a graph obtained from H   K1  by adding a new vertex and 
join it to the vertex of K1. Also S( Kn

c )  K1,n. In both the cases, S(G) has a full vertex. Hence the proof.                                                                 
Proposition 2.15  For any connected graph G,  (G)   ( S(G))  max{ (G) + , }. 
Proof  Let v be a vertex of maximum  degree in S(G). If v is a newly added vertex, then            (S(G)) = . Otherwise, if v  

V(G), then there arise two cases. When v    iS , 1  i  , then  (S(G)) =  (G). When v   iS , 1  i  ,  (S(G)) = 

(G) + . Hence the maximum degree of the graph S(G) varies as,  (G)   ( S(G))  max{ (G) + , }. Hence the proof.■ 
For any n  6, there exists a graph of order n with  (S(G)) = (G), P3k, k  2 is one such a graph. Also the spider graph proves the 
existence of graphs with  (S(G)) =  (G). The wounded spider graph stands as an example of graphs with  (S(G)) =  (G) +. 
For example the graphs G1,G2,G3 with  (S(G1)) = (G1),  (S(G2)) = (G2) +  and  (S(G3)) = (G) respectively are shown 
in Figure 16. Here G1 is the spider graph on 9 vertices, G2 is the wounded spider graph on 5 vertices and G3 is the path graph on 12 
vertices. 

S( B₄‚₅ ∪ K₃ ) S( C₃( 3, 0, 0 ) ∪ K₁‚₄ ∪ K₃ ) 
Figure  
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III. DISTANCE PROPERTIES OF -SPLITTING GRAPHS 

Here we are interested in studying about the distance properties in S-graphs. Also normally we expect diam(S(G)) < diam(G). But 
there are graphs with diam(S(G))  diam(G). This behaviour gives rise to following three definitions S

+-graphs, S
--graphs, and 

S
*-graphs as given below: 

A graph G is called a S+-graph if diam(G) < diam(S(G)). 
It is called a S--graph if diam(G) > diam(S(G)). 
Finally, it is said to be a S*-graph if diam(G) = diam(S(G)). For example, S

+, S
-, and    S

*-graphs are shown in Figure 17.  

 

 
 Some standard graphs with their diameters and corresponding families are listed below: 

Figure  16 
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Theorem 3.1  For any graph G, the distance between newly added vertices in  S(G) is 2 or 3. 
Proof  Let G be any graph of order n, and w1 and w2 be any two newly added vertices in S(G).      We know that d*(wi) = (G), 1  i 
  and d(w1,w2)  2 (Fact 2.1). 
Case (i)  Suppose N(w1)   N(w2)  . Let x   N(w1) N(w2). Then x is the common neighbour of w1 and w2, and so d(w1,w2) = 
2.  
Case (ii)  Suppose N(w1)   N(w2) = . Then let x  N(w1). Since N(w1) is a -set, every vertex in Nc(w1) is adjacent to at least one 
vertex in N(w1). But N(w2)   Nc(w1). Therefore, there exists a vertex y  N(w2) such that y is adjacent to a vertex x in N(w1). 
Then d(w1,w2) = 3.               ■ 
Theorem 3.2  For any graph G, diam(S(G))  4. 
Proof  Let G be any graph and S(G) be its corresponding -splitting graph. Let u and v be any two vertices in S(G). We claim that 
d(u,v)  4 for every u,v  V(G). 
Case (i)  If u and v are newly added vertices in S(G). By Theorem 3.1, d(u,v)  3. 
Case (ii)  If u is a newly added vertex and v  V(G). Then N(u) is a dominating set, and therefore vN(u) or v is adjacent to a 
vertex in N(u) in S(G). This forces that d(u,v)  2. 
Case (iii)  Suppose u, v  V(G). Then there arise two subcases. 
Subcase (i)  Let u belong to a -set S. Then there is a newly added vertex w corresponding to S. If v  S, then uwv is a u-v path of 
length 2 in S(G). Therefore d(u,v)  2. If v   S, then there is a vertex v1 in S, adjacent to v. Therefore uwv1v is a u-v path of length 
3, and so d(u,v)  3. If v belongs to any other -set, then in a similar way we can show that d(u,v)  3. 
Subcase (ii)  Neither u nor v belongs to any -set. Fix a newly added vertex w. Clearly, N(w) is a -set. So V(G)   N(N(w)) in 
S(G). Therefore, d(u,v)  4. Hence diam(S(G))  4.               ■ 
The inequality stated above is strict. For example, diam(S(P3k)) = 4, for any k  2.  For example, diam(S(P6)) = 4 can be verified in 
Figure 18. 



www.ijraset.com                                                                                                            Volume 4 Issue III, March 2016 
IC Value: 13.98                                                                                                             ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET 2013: All Rights are Reserved 
 

680 

 
The following corollary gives a characterisation of S

--graphs. 

Corollary 3.3 Any connected graph G with diam(G) > 4, is a S
--graph. 

Proof  Suppose G is a connected graph and diam(G) > 4. Let S(G) be its corresponding             -splitting graph. By Theorem 3.2, 
diam(S(G))  4 and the result follows.                             ■ 
   

It has been prove in [7], that (Pn) = 
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Proposition 3.4  The path graph Pn is S

+-graph if n  2, S
*-graph if n = 3, 4, and S

--graph if      n  5.         
Proposition 3.5  The cycle graph Cn is S

+-graph if n  5, S
*-graph if n = 6, 7, and S

--graph if   n  8.             
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