

4 III March 2016

www.ijraset.com Volume 4 Issue III, March 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2013: All Rights are Reserved
442

Balanced Pipeline Stages with Minimum Logic
Delay on Encrypted High Speed Data Using

FPGA Based AES Algorithm

Sowmyaa. S1, N. Jayanthi2
 1PG Scholar, ME (VLSI Design), Mahendra Engineering College,Namakkal ,Tamilnadu, India.
2Assistant Professor, Department of ECE, Mahendra Engineering College,Namakkal,Tamilnadu,India.

Abstract— Cryptography is the study of mathematical techniques related to aspects of information security such as
confidentiality, data integrity, entity authentication and data origin authentication. In data and telecommunications,
cryptography is necessary when communicating over any unreliable medium, which includes any network particularly the
internet. In this paper, a 128 bit AES encryption and Decryption by using Rijndael algorithm (Advanced Encryption Standard
algorithm) is been made into a synthesizable using Verilog code which can be easily implemented on to FPGA. The algorithm is
composed of three main parts: cipher, inverse cipher and Key Expansion. Cipher converts data to an unintelligible form called
plaintext. Key Expansion generates a Key schedule that is used in cipher and inverse cipher procedure. Cipher and inverse
cipher are composed of special number of rounds. For the AES algorithm, the number of rounds to be performed during the
execution of the algorithm uses a round function that is composed of four different byte-oriented transformations: Sub Bytes,
Shift Rows, Mix columns and Add Round Key.
Keywords—Advanced Encryption Standard, Cryptography, Decryption, Encryption.

I. INTRODUCTION
THE Cryptography plays an important role in the security of data transmission . This paper addresses efficient hardware
implementation of the AES (Advanced Encryption Standard) algorithm and describes the design and performance testing of
Rijndael algorithm . A strong focus is placed on high throughput implementations, which are required to support security for current
and future high bandwidth applications . This implementation will be useful in wireless security like military communication and
mobile telephony where there is a gayer emphasis on the speed of communication . This standard specifies the Rijndael algorithm, a
symmetric block cipher that can process data blocks of 128 bits, using cipher keys with lengths of 128,192, and 256 bits .
Throughout the remainder of this standard, the algorithm specified herein will be referred to as ―the AES algorithm. The algorithm
may be used with the three different key lengths indicated above, and therefore these different ―flavors may be referred to as
―AES-128, ―AES-192, and ―AES-256.

A. AES algorithm
AES is short for Advanced Encryption Standard and is a United States encryption standard defined in Federal Information
Processing Standard (FIPS) 192. AES is the most recent of the four current algorithms approved for federal us in the United States.
AES is a symmetric encryption algorithm processing data in block of 128 bits. AES is symmetric since the same key is used for
encryption and the reverse transformation, decryption 2]. The only secret necessary to keep for security is the key. AES may
configured to use different key-lengths, the standard defines 3 lengths and the resulting algorithms are named AES-128, AES-192
and AES-256 respectively to indicate the length in bits of the key. The older standard, DES or Data Encryption Standard. DES is
upto 56bits only 4]. To overcome the disadvantages of des algorithm, the new standard is AES algorithm. This standard explicitly
defines the allowed values for the key length (Nk), block size (Nb), and number of rounds (Nr).

B. AES algorithm specification
For the AES algorithm, the length of the input block, the output block and the State is 128 bits. This is represented by Nb = 4, which
reflects the number of 32-bit words (number of columns) in the State. An implementation of the AES algorithm shall support at
least one of the three key lengths: 128, 192, or 256 bits (i.e., Nk = 4, 6, or 8, respectively). Implementations may optionally support

www.ijraset.com Volume 4 Issue III, March 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2013: All Rights are Reserved
443

two or three key lengths, which may promote the interoperability of algorithm implementations. For the AES algorithm, the length
of the Cipher Key, K, is 128, 192 or 256 bits. The key length is represented by Nk = 4, 6, or 8which reflects the number of 32-bit
words (number of columns) in the Cipher Key.

Fig 1: General structure of AES algorithm

For the AES algorithm, the number of rounds to be performed during the execution of the algorithm is dependent on the key size.
The number of rounds is represented by Nr, where Nr = 10 when Nk = 4, Nr = 12 when
Nk = 6, and Nr = 14 when Nk = 8. The only Key-Block-Round combinations that conform to this standard are given in Table 1.

For both its Cipher and Inverse Cipher, the AES algorithm uses a round function that is composed of four different byte-oriented
transformations:
1) Byte substitution using a substitution table (S-box),
2) Shifting rows of the State array by different offsets,
3) Mixing the data within each column of the State array, and
4) Adding a Round Key to the State.

II. ENCRYPTION
In encryption mode, the initial key is added to the input value at the very beginning, which is called an initial round. This is
followed by 9 iterations of a normal round and ends with a slightly modified final round, as one can see in Figure 2. During one
normal round the following operations are performed in the following order: Sub Bytes, Shift Rows, Mix Columns, and Add Round
key. The final round is a normal round without the Mix Columns stage.

www.ijraset.com Volume 4 Issue III, March 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2013: All Rights are Reserved
444

Fig 2: General structure of Encryption.

A. Steps in AES encryption
1) Sub Bytes—a non-linear substitution step where each byte is replaced with another according to a lookup table.
2) Shift Rows—a transposition step where each row of the state is shifted cyclically a certain number of steps.
3) Mix Columns—a mixing operation which operates on the columns of the state, combining the four bytes in each column
4) Add Round Key—each byte of the state is combined with the round key; each round key is derived from the cipher key using a

key schedule

B. Sub bytes Transformation
The Sub Bytes transformation is a non-linear byte substitution that operates independently on each byte of the State using a
substitution table (S-box). This S-box which is invertible is constructed by composing two transformations:
1) Take the multiplicative inverse in the finite field GF (28), the element {00} is mapped to itself.
2) Apply the following affine transformation (over GF (2)):
For 0<i<8, where bi is the ith bit of the byte, and ci is the ith bit of a byte c with the
Value {63} or {01100011}. Here and elsewhere, a prime on a variable (e.g., b)
Indicates that the variable is to be updated with the value on the right. In matrix form, the affine transformation element of the S-box
can be expressed as:

C. Shift Rows Transformation
In the Shift Rows transformation, the bytes in the last three rows of the State are cyclically shifted over different numbersof bytes
(offsets). The first row is not shifted at all, the second row is shifted by one the third row by two, and the fourth row by three bytes
to the left. Specifically, the Shift Rows transformation proceeds as follows:
The shift value shift(r,Nb) depends on the row number, r, as follows (recall that Nb = 4): shift(1,4) 1; shift(2,4) 2 ; shift(3,4) 3 .This
has the effect of moving bytes to ―lowerǁ positions in the row (i.e., lower values of c in a given row), while the ―lowestǁ bytes
wrap around into the ―topǁ of the row (i.e., higher values of c in a given row)

D. MixColumns Transformation
The Mix Columns transformation operates on the State column-by-column, treating each column as a four-term polynomial.As a
result of this multiplication, the four bytes in a column are replaced by the following:

S’0,c = ({02} • s0,c) + ({03} • s1,c) + s2,c + s3,c

S’1,c = s0,c + ({02} • s1,c) + ({03} • s2,c) + s3,c

www.ijraset.com Volume 4 Issue III, March 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2013: All Rights are Reserved
445

S’2,c = s0,c + s1,c + ({02} • s2,c) + ({03} • s3,c)

S’3,c = ({03} • s0,c) + s1,c + s2,c + ({02} • s3,c)
E. Add round Key Transformation
In the Add Round Key transformation, a Round Key is added to the State by a simple bitwise XOR operation. Each Round Key
consists of Nb words from the key schedule.Those Nb words are each added into the columns of the State, such that wi] are the key
schedule words, and round is a value in the range 0 round Nr. In the Cipher, the initial Round Key addition occurs when round = 0,
prior to the first application of the round function. The application of the Add Round Key transformation to the Nr rounds of the
Cipher occurs when 1<round <Nr. The action of this transformation is illustrated
in Fig. 8, where l = round * Nb.

F. Key Expansion
The AES algorithm takes the Cipher Key, K, and performs a Key Expansion routine to generate a key schedule. The Key Expansion
generates a total of Nb (Nr + 1) words: the algorithm requires an initial set of Nb words, and each of the Nr rounds requires Nb
words of key data. The resulting key schedule consists of a linear array of 4-byte words, denoted wi], with i in the range 0 < i <
Nb(Nr + 1). The expansion of the input key into the key schedule proceeds according to the pseudo code. SubWord is a function that
takes a four-byte input word and applies the S-box to each of the four bytes to produce an output word. The function Rot Word takes
a word a0,a1,a2,a3] as input, performs a cyclic permutation, and returns the word a1,a2,a3,a0]. The round constant word array,
Rconi], contains the values given by xi-1,{00},{00},{00}], with x i-1 being powers of x (x is denoted as {02}) in the field GF(28).
The first Nk words of the expanded key are filled with the Cipher Key. Every following word, wi], is equal to the
XOR of the previous word, wi-1], and the word Nk positions earlier, wi-Nk]. For words in positions that are a multiple of Nk, a
transformation is applied to wi-1] prior to the XOR, followed by an XOR with a round constant, Rconi]. This transformation
consists of a cyclic shift of the bytes in a word (RotWord), followed by the application of a table lookup to all four bytes of the word
(SubWord). It is important to note that the Key Expansion routine for 256-bit Cipher Keys (Nk = 8) is slightly different than for
128- and 192-bit Cipher Keys. If Nk = 8 and i-4 is a multiple of Nk, then SubWord () is applied to w i-1] prior to the XOR.

III. DECRYPTION

In decryption mode, the operations are in reverse order compared to their order in encryption mode. Thus it starts with an initial
round, followed by 9 iterations of an inverse normal round and ends with an AddRoundKey. An inverse normal round consists of
the following operations in this order: AddRoundKey, InvMixColumns, InvShiftRows, and InvSubBytes. An initial round is an
inverse normal round without the InvMixColumns.

Fig 3: General structure of Decryption.

A. Inv Shift rows Transformation
InvShiftRows is the inverse of the ShiftRows transformation. The bytes in the last three rows of the State are cyclically shifted over
different numbers of bytes (offsets). The first row, r = 0, is not shifted. The bottom three rows are cyclically shifted by Nb - shift(r,

www.ijraset.com Volume 4 Issue III, March 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2013: All Rights are Reserved
446

Nb) bytes, where the shift value shift(r,Nb) depends on the row number.

Fig 4. Invshiftrows Transformation

B. Inv subbytes transformation
InvSubBytes is the inverse of the byte substitution transformation, in which the inverse Sbox is applied to each byte of the State.
This is obtained by applying the inverse of the affine transformation followed by taking the multiplicative inverse in GF (28).The
inverse S-box used in the InvSubBytes () transformation is presented in Fig 5.

Fig 5. Inverse SBOX

C. Inv MixColumns Transformation
InvMixColumns is the inverse of the MixColumns transformation. InvMixColumns operates on the State column-by-column,
treating each column as a four term polynomial. The columns are considered as polynomials over GF (28) and multiplied modulo x4
+ 1 with a fixed polynomial a-1(x), given by a-1(x) = {0b} x3 + {0d} x2 + {09} x + {0e}, this can be written as a matrix
multiplication. Let

As a result of this multiplication, the four bytes in a column are replaced by the following:

S’2,c = ({0d} • s0,c) + ({09} • s1,c) + ({0e} • s2,c) + ({0b} • s3,c)

S’3,c = ({0b} • s0,c) + ({0d} • s1,c) + ({09} • s2,c) + ({0e} • s3,c)

D. Inverse of the Addroundkey Transformation
AddRoundKey is its own inverse, since it only involves an application of the XOR operation. Equivalent Inverse Cipher
transformations differ from that of the Cipher, while the form of the key schedules for encryption and decryption remains the same.
However, several properties of the AES algorithm allow for an Equivalent Inverse Cipher that has the same sequence of
transformations as the Cipher (with the transformations replaced by their inverses). This is accomplished with a change in the key
schedule. The two properties that allow for this Equivalent Inverse Cipher are as follows: The Sub Bytes and Shift Rows
transformations commute; that is, a Sub Bytes transformation immediately followed by a Shift Rows transformation is equivalent to
a Shift Rows transformation immediately followed by a Sub Bytes transformation.

IV. IMPLEMENTATION RESULTS AND DISCUSSION
This paper was successfully completed with the implementation of Encryption and decryption for AES algorithm on FPGA. We

www.ijraset.com Volume 4 Issue III, March 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2013: All Rights are Reserved
447

implemented different sub modules for AES algorithm by using Verilog code. This implementation will be useful in wireless
security like military communication and mobile telephony where there is a gayer emphasis on the speed of communication.

Fig 6.Encryption Result

Encryption simulation was successfully completed by the use of key expansion and transformations of shift Rows, sub

V. CONCLUSION AND FUTURE WORK
This paper was successfully completed with the implementation of AES algorithm on 128 bit message. The encrypted cipher text
and the decrypted text are analyzed and proved to be correct. The encryption efficiency of the proposed AES algorithm was studied
and met with satisfactory results. The following can be considered for the future works of this paper:
A. An extra modification to be used for 192 bit and 256 bit key AES which is an extension of the present paper.
B. Power reduction and area minimization for the proposed AES algorithm is to be device.
C. LCD can be used for display.

VI. AES APPLICATIONS
AES Encryption and Decryption has many applications. It is used in cases where data is too sensitive that only the authorized people
are supposed to know and not to the rest. The following are the various applications

Secure Communication
Smart Cards
RFID
ATM networks
Image encryption
Secure Storage
Confidential Cooperate Documents
Government Documents
FBI Files
Personal Storage Devices
Person Information Protection

REFERENCES
[1] Lee, NIST Special Publication 800-21, Guideline for Implementing Cryptography in the Federal Government, National Institute of Standards and Technology,

November 1999.
[2] J. Daemen and V. Rijmen, The block cipher Rijndael, Smart Card research and Applications, LNCS 1820, Springer-Verlag, pp. 288-296.
[3] J. Nechvatal, et. al., Report on the Development of the Advanced Encryption Standard (AES), National Institute of Standards and Technology, October 2, 2000.
[4] Specification for the Advanced Encryption Standard (AES),ǁ Federal Information Processing Standards Publication 197, Nov. 2001
[5] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC Press, New York, 1997, p. 81-83.
[6] C.-P. Su, T.-F. Lin, C.-T. Huang, and C.-W. Wu, ―A high-throughput low-cost AES processor,ǁ IEEE Commun. Mag., vol. 41, no. 12, pp.86–91, Dec. 2003.
[7] C.-P. Su, C.-L. Horng, C.-T. Huang, and C.-W. Wu, ―A configurable AES processor for enhanced security,ǁ in Proc. ASP-DAC, Shanghai, China, Jan. 2005,

pp. 361–366.
[8] Rachh, R.R.; Anami, B.S.; Ananda Mohan, P.V. ―Efficient implementations of S-box and inverse S-box for AES algorithm,ǁ in TENCON 2009 - 2009 IEEE

Region 10 Conference , Nov. 2009, pp. 1–6.
[9] Kaur, Swinder; Vig, Renu , ǁ Efficient Implementation of AES Algorithm in FPGA Deviceǁ in Conference on Computational Intelligence and Multimedia

Applications, Nov 2007,pp. 179-187

