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Abstract – In the increasing model of the embedded system software solutions host compiled as well as the Real Time Operating 
System made the dramatic added applications for the mobile applications all over the world. However, designerspay the price for 
higher performance with a loss in timing accuracy.In this work, we introduce a novel predictive OS model toprovide fast 
software simulation with accurate scheduling of periodicreal-time tasks. The OS model predicts the next preemptionpoint by 
monitoring system state, and automatically and optimallyadjusting the granularity of back-annotated delays. We evaluatedour 
simulator on a range of periodic task sets. Our observationsshow that we can achieve the same 99% accuracy as a simulationat 1 
s granularity with an average 230x speedup.
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I. INTRODUCTION
In recent years, the complexity of embedded systems 

has increased dramatically. The challenge is to design such 
complex systems with constrains on design goals, especially 
real-time performance, at reduced development time and cost. 
Since software provides a high degree of flexibility and easy 
code reuse, the trend over the last years has been to shift more 
and more functionality into software. Hence, effective 
evaluation of such complex, software-intensive systems in early 
stages of the design process is essential. Many studies have 
focused on methods to provide fast and accurate simulation by 
abstracting the software execution environment.

For example, virtual platforms provide a high level 
functional prototype of a target architecture, which allows 
designers to debug and simulate their software along with the 
rest of the system before the actual hardware is available. 

Virtual platforms execute the binary code of the software on the 
target architecture prototype at close to real-time speeds. 
However, such approaches only provide fast functional 
simulation, with limited or no timing information. Recently, 
host-compiled approaches have been developed to provide fast 
simulation coupled with accurate timing execution. In such 
approaches, the software is natively compiled and executed on a 
host machine while an abstract model of the target architecture 
manages the execution order of user application tasks. For 
timing accuracy, the application code is instrumented with back-
annotated execution delays. In host compiled approaches, higher 
speed is achieved by coarse grained simulation of the system, 
which inherently comes at a loss in timing accuracy. In other 
words, there is a fundamental tradeoff between simulation speed 
and timing accuracy. In this paper, we aim to eliminate this 
tradeoff in host compiled software simulation. We present a 
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platform modeling approach for fully accurate yet fast 
simulation of real-time applications. At its core, this is enabled 
by a novel RTOS model, which is capable of permanently 
monitoring system state to automatically adjust simulated timing 
granularities and eliminate task schedulingerrors while 
maintaining fast simulation speed. In such an approach, 
designers need not be concerned with manually selecting a 
proper granularity for optimizing the speed and accuracy 
tradeoff. Instead, the plat form simulator automatically, 
continuously and dynamically adjusts to changing system 
conditions in order to achieve an optimal simulation. The 
remainder of this paper is organized as follows: in the following 
subsections, we review related work and present an overview of 
our simulator. Then, we discuss the details of our approach in 
Section II. Results of our experiments are summarized in 
Section III. Finally, we conclude this paper with a summary and 
outlook on future work in Section IV.

A. RELATED WORK

Recently, so-called host-compiled or source-level 
simulation approaches have received widespread attention as a 
solution for rapid evaluation of software at early design stages. 
Such approaches provide high performance by abstracting the 
simulation platform [1], [2], [3], [4]. The high-level source code 
of applications is back-annotated with timing estimates, which 
are typically obtained by compiling to an intermediate 
representation [5], [6]. Application execution is managed by an 
abstract model of the software execution environment, which is 
usually developed on top of standard system-level design 
languages (SLDLs) (e.g. System C [7] or Spec C [8]).Some of 
the earliest host-compiled approaches were centered on models 
of the OS itself [9], [10], [11]. 

Later, these approaches were extended into complete 
processor models that include timing-accurate descriptions of 
interrupt chains and TLM-based bus interfaces [12], [13]. Such 
processor model shave been shown to simulate at speeds beyond 
500 MIPS with more than 95% timing accuracy. Several 
researchers have focused on improving the accuracy of high-
level simulators while maintaining similar performance. Krause 
et al. [14] present combined ISS and abstract RTOS model co-
simulation. 

This approach replaces an actual RTOS binary code 
with an abstract model running outside the ISS and performs 

cycle-accurate thread switches. Khaligh et al. [15] present an 
adaptive TLM simulation kernel, which changes the level of 
accuracy during simulation to the level expected by designers. 
Schirner et al. [16] introduce a granularity-independent 
approach for accurate simulation of interrupts on host-compiled 
processor models by applying optimistic prediction and 
correction. In all cases, however, fundamental static speed and 
accuracy tradeoffs remain. By contrast, we adjust granularities 
automatically, optimally and dynamically to achieve fast and 
accurate simulation.

B. Host-Compiled Software Simulator

We have developed a high-level, host-compiled software 
simulator, details of which can be found in [17]. Figure 1 show 
the structure of our simulator, which is designed in a layered-
based fashion. 

Fig.1.Host compiled software

A standard SLDL kernel provides abasic platform for 
running simulations on a host machine. In combination with the 
underlying SLDL, a TLM layer interfaces the software 
simulator with standard TLM back planes that provide a fast 
system-wide co-simulation platform. A hardware abstraction 
layer (HAL) includes necessary I/O drivers and implements an 

T2 T3
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abstract interrupt handling mechanism. When an interrupt is 
captured by the TLM layer, the HAL suspends application 
execution and lets the interrupt handler trigger the registered.

Interrupt task in the OS. On top of the HAL, an OS 
layer replicates a typical OS architecture to manage the 
execution order of a multi-tasking application. The OS model 
there by schedules, queues, dispatches and executes application 
and interrupt tasks according to a chosen scheduling policy. At 
the highest level, the application layer consists of concurrent and 

sequential high-level SLDL processes, which communicate with 
each other using abstract SLDL channels.Kernel in order to 
control the state of the system.

The user application isintegrated into the simulator and 
accesses services of the OS model via a canonical OS API. At 
the core of the simulation engine is the OS model, which 
dynamically schedules concurrent application tasks to emulate 
their sequential execution in software. The structure of our OS 
kernel is shown in Figure 2. The key component of the kernel is 
a task scheduler, which is invoked by the OS API methods 
whenever a context switch is possible or required. It decides on 
the next task to execute and preempts the currently running task 

If needed in the OS model, each task can be in five 
states, and tasks move to different states by calling API methods 
of the OS model maintains tasks in five internal queues: a Ready 
queue holds tasks that are ready to execute and is sorted based 

on a user-defined scheduling policy. An Idle queue holds 
periodic tasks that have called the kernel’s Task End Cycle 
method at the end of their iteration. The Idle queue is ordered 
based on the release time of each task’s next iteration. Idle tasks 
are retrieved from the head of queue and placed in the Ready 
queue by the OS kernel at the start time of their next period. 
Tasks waiting for an event are suspended and transferred to a 
Wait queue upon calling a Pre Wait method. Respectively, a 
blocked task will be placed back in the Ready queue when a 
Post Wait method is called to release it. To distinguish tasks that 
are waiting for an external event, an lntr Wait queue holds 
interrupt tasks until the interrupt handler in the HAL calls the 
lntr Trigger()method to move them to the Ready queue. Finally, 
a Sleep queue holds tasks that have been suspended until they 
are resumed again. 
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In addition to basic OS services, the OS kernel 
simulates task execution delays using underlying SLDL 
primitives whenever the running task calls a Time Wait method. 
Basic execution delays of the task code are back-annotated from 
estimations or measurements once atcompile time. In traditional 
models, the granularity of delays is defined by the application 
code. The scheduler is only called after advancing the 
simulation time to allow for preemption of the current task by 
any higher priority task that became available in the meantime. 
As such, errors in the preemption model are a direct function of 
the back-annotated application-level timing model. Large 
granularities result in fast simulation, but may lead to 
preemption points being shifted by a large delay. On the other 
hand, accurate simulations require a fine granularity at slow 
simulation speeds. By contrast, we propose an approach that 
automatically adjusts timing granularities to the level needed. 
The OS model has complete knowledge of the system state at 
any given time. As such, we can develop a kernel that utilizes 
this knowledge to automatically control simulation timing such 
that an error-free scheduling mechanism is provided at the 
fastest possible speed.

PROPOSED WORK

THE CACHE MODEL:

The cache model, as it can be seen on the right side of 
Figure 3, contains data space that is used for the administration 
of the cache. In this space, the valid bit, the cache tag and the 
least recently used (lru) information (containing the 
replacementstrategy) for each cache set during the run-time is 
saved. The number of cache tags and the according amount of 
valid bits that are needed depends on the associatively of the 
cache (e.g. fora two-way set associative cache, two sets of tags 
and valid bits areneeded).

Cache analysis blocks

In the middle of Figure 3, the C source code which is 
corresponding to a basic block is divided in several smaller 
blocks, the so-called cache analysis blocks. These blocks are 
needed for the considerationof the effects of instruction caches. 
Each one of these blocks contains that part of a basic block that 
fits into a single cache line. As every machine language 
instruction in such a cache analysis block has the same tag and 
the same cache index, the addresses of the instructions can be 
used to determine how a basic block has to be divided into cache 
analysis blocks. 

This is because each address consists of tag 
information and cache index. The cache index information is 
used to determine at which cache position the instruction with 
this address is cached. The tag information is used to determine 
which address was cached, as there can be multiple addresses 
with the same cache index. Therefore, a changed cache tag can 
be easily determined during thetraversal of the binary code with 
respect to the cache parameters. The block offset information is 
not needed for the cache simulation, as no real caching of data 
takes place. After the tag has been changed or at the end of a 
basic block, a function call that handles the simulated cache and 
the calculation of the additional cycles of cache misses is added 
to this block. More details about this function are described in 
the next section. 

Cycle calculation code as previously mentioned, each 
cache analysis block is characterized by a combination of tag 
and cache set index information. At the end of each basic block, 
a call to a function is included. During run-time, this function 
should determine whether the different cache analysis blocks 
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which the basic block consists of are in the simulated cache or 
not. This way, cache misses are detected. The function is shown 
in Figure 4. It has the tag and the range of cache set indices 
(iStart to iEnd) as parameters.
----------------------------------------------------------
intcycleCalculationICache( tag, iStart, iEnd )
{
for index = iStart to iEnd
if tag is found in index and valid bit is set then
{ // cache hit
renewlru information
return 0
}
else
{ // cache miss
uselru information to determine tag to overwrite
write new tag
set valid bit of written tag
renewlru information
return additional cycles needed for cache miss
}
end for
}
----------------------------------------------------------
Fig.4.Function for cache cycle correction

To find out if there is a cache hit or a cache miss, the 
functionchecks whether the tag of each cache analysis block can 
be foundin the specified set and whether the valid bit for the 
found tag is set.If the tag can be found and the valid bit is set, 
the block is alreadycached (cache hit) and no additional cycles 
are needed. Only thelru information has to be renewed.In all 
other cases, the lru information has to be used to 
determinewhich tag has to be overwritten. After that, the new 
tag has to bewritten instead of the found old one, and the valid 
bit for this taghas to be set. The lru information has to be 
renewed as well. In alast step, the additional cycles are returned 
and added to the cyclecorrection counter.

Fig.5.High-level cache hierarchy model

For accurate performance evaluation, we need to 
considerperformance penalties due to cache misses and update 
staticback-annotated delays during simulation. For this purpose, 
wedeveloped a high-level model of a cache channel that 
emulatesthe system memory behavior by updating its internal 
stateson every memory access. Note that we only need to 
modelhit/miss behavior of the cache, i.e. we are not concerned 
aboutthe data that is stored in the cache. Instead, the 
simulationhost takes care of maintaining coherent data values. 
In ourcache model, each cache line is composed out of an 
addresstag, an age counter to implement a replacement policy, 
and a coherency flag to store the current state of each 
linecompared to other cores’ caches (Figure 5). Associated with 
each core, anaccess list stores locally ordered memory 
references reportedby the application running on that core. Each 
location in thislist contains a memory address, access mode i.e. 
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Read orWrite), and an access time. Using this information, a 
cachecontroller is able to manage the cache state updating 
processand to report back total miss cycles. Accordingly, the 
simulator

Pipelining Model:
At the heart of the ARM7 CPU is the instruction pipeline. The 
pipeline is used to process instructions taken from the program 
store. On the ARM 7 a three-stage pipeline is used.A three-stage 
pipeline is the simplest form of pipeline and does not suffer 
from the kind of hazards such as read-before-write seen in 
pipelines with more stages. The pipeline has hardware 
independent stages that execute one instruction while decoding a 
second and fetching a third. Fig 6 shows that the 3 stage 
pipelining. The pipeline speeds up the throughput of CPU 
instructions so effectively that most ARM instructions can be 
executed in a single cycle. The pipeline works most efficiently 
on linear code.

Example:
The instruction:

0x4000 LDR PC, [PC,#4]
will load the contents of the address PC+4 into the PC. As the 
PC is running eight bytes ahead then the contents of address 
0x400C will be loaded into the PC and not 0x4004 as you might 
expect on first inspection.

Implementation of Proposed Work     

Micro C OS-II kernel (RTOS) IAR Embedded Workbench is the 
world-leading C/C++ compiler and debugger tool suite for 
applications based on 8-, 16-, and 32-bit microcontrollers. It 
supports more devices in more processor architectures than any 
other tool on the market. Outstanding speed optimizations 
enable IAR Embedded Workbench to generate faster code than 
ever before. Read more about the advantages of IAR Embedded 
Workbench. 

IAR Embedded Workbench Components

IAR Embedded Workbench incorporates a compiler, an 
assembler, a linker and a debugger into one integrated 
development environment (IDE). This gives you an 
uninterrupted workflow and one single toolbox in which all 
components integrate seamlessly. IAR Embedded Workbench is 

advanced and powerful, yet easy to use thanks to its smart 
functionality and user-friendly interface. Read more about the 
advantages of the world-leading tool suite.

Fig.7. IAR Embedded Workbench Components

MicroC/OS-II:

MicroC/OS-II (commonly termed as µC/OS-II or uC/OS-II), is 
the acronym for Micro-Controller Operating Systems Version 2. 
It is a priority-based pre-emptive real-time multitasking 
operating system kernel for microprocessors, written mainly in 
theC programming language. It is intended for use in embedded 
systems. Its features are:

 It is a very small real-time kernel.
 Memory footprint is about 20KB for a fullyfunctional 

kernel.
 Source code is written mostly in ANSI C.
 Highly portable, ROMable, very scalable,preemptive 

real-time, deterministic, multitaskingkernel.
 It can manage up to 64 tasks (56 user tasksavailable).
 It has connectivity with μC/GUI and μC/FS(GUI and 

File Systems for μC/OS II).
 It is ported to more than 100 microprocessorsand 

microcontrollers.
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 It is simple to use and simple to implement 
butveryeffective compared to theprice/performance 
ratio.

Table.1.Performance Comparison Table.

MicroC/OS-II is the second generation of a 
published (with source code) in a two-part 1992 article 
inEmbedded Systems Programming magazine and the book 
µC/OS The Real-Time Kernel by Jean J. Labrosse (ISBN 0
87930-444-8). The author intended at first to simply describe the 
internals of a portable operating system he had developed for his 
own use, but later developed the OS as a commercial 
product.µC/OS-II is currently maintained by Micrium Inc. and 
can be licensed per product or per product line. Use of the 
operating system is free for educational non
Additionally, Micrium provides other middleware software 
products such as µC/CAN, µC/FL, µC/FS, µ
µC/Modbus, µC/TCP-IP, µC/USB and a large assortment of 
µC/TCP-IP applications such as client software for DHCP, 
POP3, SNTP, FTP, TFTP, DNS, SMTP, and TTCP. Server 
software includes HTTP, FTP, and TFTP. PPP is also available.

EXPERIMENTAL RESULTS:

We simulated a set of randomly generated artificial 
periodic tasks and compared the simulation performance of ours 
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It is simple to use and simple to implement 
pared to theprice/performance 

Table.1.Performance Comparison Table.

II is the second generation of a kernel originally 
part 1992 article 

inEmbedded Systems Programming magazine and the book 
Time Kernel by Jean J. Labrosse (ISBN 0-

8). The author intended at first to simply describe the 
internals of a portable operating system he had developed for his 
own use, but later developed the OS as a commercial 

rently maintained by Micrium Inc. and 
can be licensed per product or per product line. Use of the 
operating system is free for educational non-commercial use. 
Additionally, Micrium provides other middleware software 
products such as µC/CAN, µC/FL, µC/FS, µC/GUI, 

IP, µC/USB and a large assortment of 
IP applications such as client software for DHCP, 

POP3, SNTP, FTP, TFTP, DNS, SMTP, and TTCP. Server 
software includes HTTP, FTP, and TFTP. PPP is also available.

We simulated a set of randomly generated artificial 
periodic tasks and compared the simulation performance of ours 

model to a conventional model under different 
timinggranularities. Accuracy is analyzed by comparing results 
to the execution of tasks on a reference ISS [15] modeling a 
single core MIPS Malta platform running a Linux 2.6 kernel 
configured with preemption and high resolution timers. 

The experimental setup consists of randomly generated 
periodic tasks with uniformly distributed periods over and
weights over for small (S), for large (L), and for medium (M) 
tasks. The priority of tasks is assigned inversely to their periods 
following a rate monotonic scheduling scheme. The execution 
delay of tasks is modeled by a delay loop of no
instructions. We ran each task set for 10 s of simulated time. At 
a nominal rate of 100 MIPS simulated by the reference ISS, this 
corresponds to 1000 million NOP instructions. Task sets have 
been generated to cover various task weight range sunder 
different total system utilizations. We analyzed the accuracy of 
our approach by comparing the response times of periodic tasks 
in the reference ISS with our host-
were back-annotated into host-

Fig.8.Error Rate Performance Comparison

Compiled models directly from measurements taken when 
running on the ISS. Model error was measured as the average 
absolute difference in individual task response times overall 

ol.2Issue IV, April 2014
ISSN: 2321-9653

SCIENCE AND 

conventional model under different 
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eference ISS [15] modeling a 
single core MIPS Malta platform running a Linux 2.6 kernel 
configured with preemption and high resolution timers. 

The experimental setup consists of randomly generated 
periodic tasks with uniformly distributed periods over and task 
weights over for small (S), for large (L), and for medium (M) 
tasks. The priority of tasks is assigned inversely to their periods 
following a rate monotonic scheduling scheme. The execution 
delay of tasks is modeled by a delay loop of no-operation (NOP) 
instructions. We ran each task set for 10 s of simulated time. At 
a nominal rate of 100 MIPS simulated by the reference ISS, this 
corresponds to 1000 million NOP instructions. Task sets have 
been generated to cover various task weight range sunder 

erent total system utilizations. We analyzed the accuracy of 
our approach by comparing the response times of periodic tasks 

-compiled simulator. Delays 

Comparison chart

Compiled models directly from measurements taken when 
running on the ISS. Model error was measured as the average 
absolute difference in individual task response times overall 
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tasks and task iterations.Table 1 shows that the comparative 
analysis for error rate. Table summarizes the task set properties 
and compares the accuracy and performance of our predictive 
RTOS (P-RTOS) model with that of a conventional model at 
four different back-annotation granularities.

We can observe that the highest possible accuracy is 
achieved using the P-RTOS model. This is equivalent to a 
conventional model at 1 s granularity, which loses a large 
amount of accuracy at coarser granularities. Table 1
the comparative analysis for error rate.          N
we would expect to see zero errors on the predictive model, our 
previous experience has shown [14] that remaining errors are 
caused by OS context switch overheads and non
of a real Linux system not included in our RTOS mode
terms of simulation performance, an average simulation speed 
of 67 GIPS is achieved on the P-RTOS model. This is 233 times 
faster than the original OS model at a granularity of 1 s and 
similar to the original model at 1 ms granularity.In the 
conventional OS model, designers are responsible for choosing 
the timing granularity to achieve acceptable accuracy and 
performance. However, selecting the proper granularity is not 
straightforward.For example, using the granularities of 1 s and 
10 s, the same accuracy is provided while the former simulates 
10 times faster than the latter. In addition, the lack of a reference 
platform for many applications makes it impossible to find a 
reliable granularity.
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RTOS) model with that of a conventional model at 

est possible accuracy is 
RTOS model. This is equivalent to a 

conventional model at 1 s granularity, which loses a large 
at coarser granularities. Table 1 shows that 

the comparative analysis for error rate.          Note that although 
we would expect to see zero errors on the predictive model, our 
previous experience has shown [14] that remaining errors are 
caused by OS context switch overheads and non-ideal behavior 
of a real Linux system not included in our RTOS model. In 
terms of simulation performance, an average simulation speed 

RTOS model. This is 233 times 
faster than the original OS model at a granularity of 1 s and 
similar to the original model at 1 ms granularity.In the 

onal OS model, designers are responsible for choosing 
the timing granularity to achieve acceptable accuracy and 
performance. However, selecting the proper granularity is not 
straightforward.For example, using the granularities of 1 s and 

uracy is provided while the former simulates 
10 times faster than the latter. In addition, the lack of a reference 
platform for many applications makes it impossible to find a 

Fig.9. CPU Loading Time Performance Comparison 

The table plots the tradeoff between average accuracy 
and simulation speed over all task sets. Fig 7 shows that the 
overview of the hardware implementation. As can be seen 
decreasing the timing granularity results in higher accuracy but 
comes at a loss in simulation performance. By contrast, our 
predictive model provides both fast and accurate results 
regardless of the timing granularity. In order to evaluate our 
approach under realistic conditions with HW/SW interactions, 
we also simulated a task set compo
applications from the automotive category of the MI Bench 
suite. 

Fig.10.Hardware Setup.
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Fig.9. CPU Loading Time Performance Comparison chart.

The table plots the tradeoff between average accuracy 
and simulation speed over all task sets. Fig 7 shows that the 
overview of the hardware implementation. As can be seen 
decreasing the timing granularity results in higher accuracy but 

simulation performance. By contrast, our 
predictive model provides both fast and accurate results 
regardless of the timing granularity. In order to evaluate our 
approach under realistic conditions with HW/SW interactions, 
we also simulated a task set composed out of a subset of 
applications from the automotive category of the MI Bench 

Fig.10.Hardware Setup.
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Benchmarks were converted to execute periodically 
and concurrently based on rate monotonic scheduling policy, 
where task Susan (edge) was modified to interact with an FPGA 
bystreaming its outputs over the system bus. The resulting task 
set was simulated for 500 s.

CONCLUSION

We presented a predictive RTOS model designed for host-
compiled software simulation of real-time periodic task sets.
The simulator automatically adjusts the granularity of back-
annotated delays by predicting the next task preemption point. 
Our model combines very fast simulation speed with error-free 
scheduling, which makes host-compiled simulators suitable for 
rapid, early evaluation of the real-time performance of periodic 
task systems within a HW/SW co-simulation context. In this 
work, we focused on solutions for avoiding errors in the 
preemption model. We have started to integrate this approach 
into our full host-compiled processor model and system 
simulator, which support sporadic tasks and inter- and intra-
processor task communications. In the future, we plan to include 
models of cache, pipeline, and other dynamic effects that 
influence preemption costs, task execution times and hence, 
accuracy of overall real-time scheduling behavior.
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