

2 IV April 2014

www.ijraset.com Vol.2Issue IV, April 2014
ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCHIN APPLIED SCIENCE AND
ENGINEERING TECHNOLOGY (IJRASET)

Page 481

A Novel Approach ForHost-Compiled Processor
Model With Cache And PipeliningIntegration

N.Vinothini1 T.Uma Maheswari2K.Kannan3 M.Sankar 4

1PG Scholar
M.E – Embedded Systems

Department of Electrical and Electronics Engineering,
R.V.S College of Engineering and Technology, Dindigul.

2, 3, 4Assistant Professor
Department of Electrical and Electronics Engineering,

R.V.S College of Engineering and Technology,
Dindigul.

Abstract – In the increasing model of the embedded system software solutions host compiled as well as the Real Time Operating
System made the dramatic added applications for the mobile applications all over the world. However, designerspay the price for
higher performance with a loss in timing accuracy.In this work, we introduce a novel predictive OS model toprovide fast
software simulation with accurate scheduling of periodicreal-time tasks. The OS model predicts the next preemptionpoint by
monitoring system state, and automatically and optimallyadjusting the granularity of back-annotated delays. We evaluatedour
simulator on a range of periodic task sets. Our observationsshow that we can achieve the same 99% accuracy as a simulationat 1
s granularity with an average 230x speedup.

Keywords: Real time operating system (RTOS), Host-compiled processor, cache model and pipelining.

I. INTRODUCTION
In recent years, the complexity of embedded systems

has increased dramatically. The challenge is to design such
complex systems with constrains on design goals, especially
real-time performance, at reduced development time and cost.
Since software provides a high degree of flexibility and easy
code reuse, the trend over the last years has been to shift more
and more functionality into software. Hence, effective
evaluation of such complex, software-intensive systems in early
stages of the design process is essential. Many studies have
focused on methods to provide fast and accurate simulation by
abstracting the software execution environment.

For example, virtual platforms provide a high level
functional prototype of a target architecture, which allows
designers to debug and simulate their software along with the
rest of the system before the actual hardware is available.

Virtual platforms execute the binary code of the software on the
target architecture prototype at close to real-time speeds.
However, such approaches only provide fast functional
simulation, with limited or no timing information. Recently,
host-compiled approaches have been developed to provide fast
simulation coupled with accurate timing execution. In such
approaches, the software is natively compiled and executed on a
host machine while an abstract model of the target architecture
manages the execution order of user application tasks. For
timing accuracy, the application code is instrumented with back-
annotated execution delays. In host compiled approaches, higher
speed is achieved by coarse grained simulation of the system,
which inherently comes at a loss in timing accuracy. In other
words, there is a fundamental tradeoff between simulation speed
and timing accuracy. In this paper, we aim to eliminate this
tradeoff in host compiled software simulation. We present a

www.ijraset.com Vol.2Issue IV, April 2014
ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCHIN APPLIED SCIENCE AND
ENGINEERING TECHNOLOGY (IJRASET)

Page 482

platform modeling approach for fully accurate yet fast
simulation of real-time applications. At its core, this is enabled
by a novel RTOS model, which is capable of permanently
monitoring system state to automatically adjust simulated timing
granularities and eliminate task schedulingerrors while
maintaining fast simulation speed. In such an approach,
designers need not be concerned with manually selecting a
proper granularity for optimizing the speed and accuracy
tradeoff. Instead, the plat form simulator automatically,
continuously and dynamically adjusts to changing system
conditions in order to achieve an optimal simulation. The
remainder of this paper is organized as follows: in the following
subsections, we review related work and present an overview of
our simulator. Then, we discuss the details of our approach in
Section II. Results of our experiments are summarized in
Section III. Finally, we conclude this paper with a summary and
outlook on future work in Section IV.

A. RELATED WORK

Recently, so-called host-compiled or source-level
simulation approaches have received widespread attention as a
solution for rapid evaluation of software at early design stages.
Such approaches provide high performance by abstracting the
simulation platform [1], [2], [3], [4]. The high-level source code
of applications is back-annotated with timing estimates, which
are typically obtained by compiling to an intermediate
representation [5], [6]. Application execution is managed by an
abstract model of the software execution environment, which is
usually developed on top of standard system-level design
languages (SLDLs) (e.g. System C [7] or Spec C [8]).Some of
the earliest host-compiled approaches were centered on models
of the OS itself [9], [10], [11].

Later, these approaches were extended into complete
processor models that include timing-accurate descriptions of
interrupt chains and TLM-based bus interfaces [12], [13]. Such
processor model shave been shown to simulate at speeds beyond
500 MIPS with more than 95% timing accuracy. Several
researchers have focused on improving the accuracy of high-
level simulators while maintaining similar performance. Krause
et al. [14] present combined ISS and abstract RTOS model co-
simulation.

This approach replaces an actual RTOS binary code
with an abstract model running outside the ISS and performs

cycle-accurate thread switches. Khaligh et al. [15] present an
adaptive TLM simulation kernel, which changes the level of
accuracy during simulation to the level expected by designers.
Schirner et al. [16] introduce a granularity-independent
approach for accurate simulation of interrupts on host-compiled
processor models by applying optimistic prediction and
correction. In all cases, however, fundamental static speed and
accuracy tradeoffs remain. By contrast, we adjust granularities
automatically, optimally and dynamically to achieve fast and
accurate simulation.

B. Host-Compiled Software Simulator

We have developed a high-level, host-compiled software
simulator, details of which can be found in [17]. Figure 1 show
the structure of our simulator, which is designed in a layered-
based fashion.

Fig.1.Host compiled software

A standard SLDL kernel provides abasic platform for
running simulations on a host machine. In combination with the
underlying SLDL, a TLM layer interfaces the software
simulator with standard TLM back planes that provide a fast
system-wide co-simulation platform. A hardware abstraction
layer (HAL) includes necessary I/O drivers and implements an

T2 T3

www.ijraset.com Vol.2Issue IV, April 2014
ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCHIN APPLIED SCIENCE AND
ENGINEERING TECHNOLOGY (IJRASET)

Page 483

abstract interrupt handling mechanism. When an interrupt is
captured by the TLM layer, the HAL suspends application
execution and lets the interrupt handler trigger the registered.

Interrupt task in the OS. On top of the HAL, an OS
layer replicates a typical OS architecture to manage the
execution order of a multi-tasking application. The OS model
there by schedules, queues, dispatches and executes application
and interrupt tasks according to a chosen scheduling policy. At
the highest level, the application layer consists of concurrent and

sequential high-level SLDL processes, which communicate with
each other using abstract SLDL channels.Kernel in order to
control the state of the system.

The user application isintegrated into the simulator and
accesses services of the OS model via a canonical OS API. At
the core of the simulation engine is the OS model, which
dynamically schedules concurrent application tasks to emulate
their sequential execution in software. The structure of our OS
kernel is shown in Figure 2. The key component of the kernel is
a task scheduler, which is invoked by the OS API methods
whenever a context switch is possible or required. It decides on
the next task to execute and preempts the currently running task

If needed in the OS model, each task can be in five
states, and tasks move to different states by calling API methods
of the OS model maintains tasks in five internal queues: a Ready
queue holds tasks that are ready to execute and is sorted based

on a user-defined scheduling policy. An Idle queue holds
periodic tasks that have called the kernel’s Task End Cycle
method at the end of their iteration. The Idle queue is ordered
based on the release time of each task’s next iteration. Idle tasks
are retrieved from the head of queue and placed in the Ready
queue by the OS kernel at the start time of their next period.
Tasks waiting for an event are suspended and transferred to a
Wait queue upon calling a Pre Wait method. Respectively, a
blocked task will be placed back in the Ready queue when a
Post Wait method is called to release it. To distinguish tasks that
are waiting for an external event, an lntr Wait queue holds
interrupt tasks until the interrupt handler in the HAL calls the
lntr Trigger()method to move them to the Ready queue. Finally,
a Sleep queue holds tasks that have been suspended until they
are resumed again.

www.ijraset.com Vol.2Issue IV, April 2014
ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCHIN APPLIED SCIENCE AND
ENGINEERING TECHNOLOGY (IJRASET)

Page 484

In addition to basic OS services, the OS kernel
simulates task execution delays using underlying SLDL
primitives whenever the running task calls a Time Wait method.
Basic execution delays of the task code are back-annotated from
estimations or measurements once atcompile time. In traditional
models, the granularity of delays is defined by the application
code. The scheduler is only called after advancing the
simulation time to allow for preemption of the current task by
any higher priority task that became available in the meantime.
As such, errors in the preemption model are a direct function of
the back-annotated application-level timing model. Large
granularities result in fast simulation, but may lead to
preemption points being shifted by a large delay. On the other
hand, accurate simulations require a fine granularity at slow
simulation speeds. By contrast, we propose an approach that
automatically adjusts timing granularities to the level needed.
The OS model has complete knowledge of the system state at
any given time. As such, we can develop a kernel that utilizes
this knowledge to automatically control simulation timing such
that an error-free scheduling mechanism is provided at the
fastest possible speed.

PROPOSED WORK

THE CACHE MODEL:

The cache model, as it can be seen on the right side of
Figure 3, contains data space that is used for the administration
of the cache. In this space, the valid bit, the cache tag and the
least recently used (lru) information (containing the
replacementstrategy) for each cache set during the run-time is
saved. The number of cache tags and the according amount of
valid bits that are needed depends on the associatively of the
cache (e.g. fora two-way set associative cache, two sets of tags
and valid bits areneeded).

Cache analysis blocks

In the middle of Figure 3, the C source code which is
corresponding to a basic block is divided in several smaller
blocks, the so-called cache analysis blocks. These blocks are
needed for the considerationof the effects of instruction caches.
Each one of these blocks contains that part of a basic block that
fits into a single cache line. As every machine language
instruction in such a cache analysis block has the same tag and
the same cache index, the addresses of the instructions can be
used to determine how a basic block has to be divided into cache
analysis blocks.

This is because each address consists of tag
information and cache index. The cache index information is
used to determine at which cache position the instruction with
this address is cached. The tag information is used to determine
which address was cached, as there can be multiple addresses
with the same cache index. Therefore, a changed cache tag can
be easily determined during thetraversal of the binary code with
respect to the cache parameters. The block offset information is
not needed for the cache simulation, as no real caching of data
takes place. After the tag has been changed or at the end of a
basic block, a function call that handles the simulated cache and
the calculation of the additional cycles of cache misses is added
to this block. More details about this function are described in
the next section.

Cycle calculation code as previously mentioned, each
cache analysis block is characterized by a combination of tag
and cache set index information. At the end of each basic block,
a call to a function is included. During run-time, this function
should determine whether the different cache analysis blocks

www.ijraset.com Vol.2Issue IV, April 2014
ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCHIN APPLIED SCIENCE AND
ENGINEERING TECHNOLOGY (IJRASET)

Page 485

which the basic block consists of are in the simulated cache or
not. This way, cache misses are detected. The function is shown
in Figure 4. It has the tag and the range of cache set indices
(iStart to iEnd) as parameters.
--
intcycleCalculationICache(tag, iStart, iEnd)
{
for index = iStart to iEnd
if tag is found in index and valid bit is set then
{ // cache hit
renewlru information
return 0
}
else
{ // cache miss
uselru information to determine tag to overwrite
write new tag
set valid bit of written tag
renewlru information
return additional cycles needed for cache miss
}
end for
}
--
Fig.4.Function for cache cycle correction

To find out if there is a cache hit or a cache miss, the
functionchecks whether the tag of each cache analysis block can
be foundin the specified set and whether the valid bit for the
found tag is set.If the tag can be found and the valid bit is set,
the block is alreadycached (cache hit) and no additional cycles
are needed. Only thelru information has to be renewed.In all
other cases, the lru information has to be used to
determinewhich tag has to be overwritten. After that, the new
tag has to bewritten instead of the found old one, and the valid
bit for this taghas to be set. The lru information has to be
renewed as well. In alast step, the additional cycles are returned
and added to the cyclecorrection counter.

Fig.5.High-level cache hierarchy model

For accurate performance evaluation, we need to
considerperformance penalties due to cache misses and update
staticback-annotated delays during simulation. For this purpose,
wedeveloped a high-level model of a cache channel that
emulatesthe system memory behavior by updating its internal
stateson every memory access. Note that we only need to
modelhit/miss behavior of the cache, i.e. we are not concerned
aboutthe data that is stored in the cache. Instead, the
simulationhost takes care of maintaining coherent data values.
In ourcache model, each cache line is composed out of an
addresstag, an age counter to implement a replacement policy,
and a coherency flag to store the current state of each
linecompared to other cores’ caches (Figure 5). Associated with
each core, anaccess list stores locally ordered memory
references reportedby the application running on that core. Each
location in thislist contains a memory address, access mode i.e.

www.ijraset.com Vol.2Issue IV, April 2014
ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCHIN APPLIED SCIENCE AND
ENGINEERING TECHNOLOGY (IJRASET)

Page 486

Read orWrite), and an access time. Using this information, a
cachecontroller is able to manage the cache state updating
processand to report back total miss cycles. Accordingly, the
simulator

Pipelining Model:
At the heart of the ARM7 CPU is the instruction pipeline. The
pipeline is used to process instructions taken from the program
store. On the ARM 7 a three-stage pipeline is used.A three-stage
pipeline is the simplest form of pipeline and does not suffer
from the kind of hazards such as read-before-write seen in
pipelines with more stages. The pipeline has hardware
independent stages that execute one instruction while decoding a
second and fetching a third. Fig 6 shows that the 3 stage
pipelining. The pipeline speeds up the throughput of CPU
instructions so effectively that most ARM instructions can be
executed in a single cycle. The pipeline works most efficiently
on linear code.

Example:
The instruction:

0x4000 LDR PC, [PC,#4]
will load the contents of the address PC+4 into the PC. As the
PC is running eight bytes ahead then the contents of address
0x400C will be loaded into the PC and not 0x4004 as you might
expect on first inspection.

Implementation of Proposed Work

Micro C OS-II kernel (RTOS) IAR Embedded Workbench is the
world-leading C/C++ compiler and debugger tool suite for
applications based on 8-, 16-, and 32-bit microcontrollers. It
supports more devices in more processor architectures than any
other tool on the market. Outstanding speed optimizations
enable IAR Embedded Workbench to generate faster code than
ever before. Read more about the advantages of IAR Embedded
Workbench.

IAR Embedded Workbench Components

IAR Embedded Workbench incorporates a compiler, an
assembler, a linker and a debugger into one integrated
development environment (IDE). This gives you an
uninterrupted workflow and one single toolbox in which all
components integrate seamlessly. IAR Embedded Workbench is

advanced and powerful, yet easy to use thanks to its smart
functionality and user-friendly interface. Read more about the
advantages of the world-leading tool suite.

Fig.7. IAR Embedded Workbench Components

MicroC/OS-II:

MicroC/OS-II (commonly termed as µC/OS-II or uC/OS-II), is
the acronym for Micro-Controller Operating Systems Version 2.
It is a priority-based pre-emptive real-time multitasking
operating system kernel for microprocessors, written mainly in
theC programming language. It is intended for use in embedded
systems. Its features are:

 It is a very small real-time kernel.
 Memory footprint is about 20KB for a fullyfunctional

kernel.
 Source code is written mostly in ANSI C.
 Highly portable, ROMable, very scalable,preemptive

real-time, deterministic, multitaskingkernel.
 It can manage up to 64 tasks (56 user tasksavailable).
 It has connectivity with μC/GUI and μC/FS(GUI and

File Systems for μC/OS II).
 It is ported to more than 100 microprocessorsand

microcontrollers.

www.ijraset.com

INTERNATIONAL JOURNAL
ENGINEERING

 It is simple to use and simple to implement
butveryeffective compared to theprice/performance
ratio.

Table.1.Performance Comparison Table.

MicroC/OS-II is the second generation of a
published (with source code) in a two-part 1992 article
inEmbedded Systems Programming magazine and the book
µC/OS The Real-Time Kernel by Jean J. Labrosse (ISBN 0
87930-444-8). The author intended at first to simply describe the
internals of a portable operating system he had developed for his
own use, but later developed the OS as a commercial
product.µC/OS-II is currently maintained by Micrium Inc. and
can be licensed per product or per product line. Use of the
operating system is free for educational non
Additionally, Micrium provides other middleware software
products such as µC/CAN, µC/FL, µC/FS, µ
µC/Modbus, µC/TCP-IP, µC/USB and a large assortment of
µC/TCP-IP applications such as client software for DHCP,
POP3, SNTP, FTP, TFTP, DNS, SMTP, and TTCP. Server
software includes HTTP, FTP, and TFTP. PPP is also available.

EXPERIMENTAL RESULTS:

We simulated a set of randomly generated artificial
periodic tasks and compared the simulation performance of ours

Vol

JOURNAL FOR RESEARCHIN APPLIED SCIENCE
ENGINEERING TECHNOLOGY (IJRASET)

Page 487

It is simple to use and simple to implement
pared to theprice/performance

Table.1.Performance Comparison Table.

II is the second generation of a kernel originally
part 1992 article

inEmbedded Systems Programming magazine and the book
Time Kernel by Jean J. Labrosse (ISBN 0-

8). The author intended at first to simply describe the
internals of a portable operating system he had developed for his
own use, but later developed the OS as a commercial

rently maintained by Micrium Inc. and
can be licensed per product or per product line. Use of the
operating system is free for educational non-commercial use.
Additionally, Micrium provides other middleware software
products such as µC/CAN, µC/FL, µC/FS, µC/GUI,

IP, µC/USB and a large assortment of
IP applications such as client software for DHCP,

POP3, SNTP, FTP, TFTP, DNS, SMTP, and TTCP. Server
software includes HTTP, FTP, and TFTP. PPP is also available.

We simulated a set of randomly generated artificial
periodic tasks and compared the simulation performance of ours

model to a conventional model under different
timinggranularities. Accuracy is analyzed by comparing results
to the execution of tasks on a reference ISS [15] modeling a
single core MIPS Malta platform running a Linux 2.6 kernel
configured with preemption and high resolution timers.

The experimental setup consists of randomly generated
periodic tasks with uniformly distributed periods over and
weights over for small (S), for large (L), and for medium (M)
tasks. The priority of tasks is assigned inversely to their periods
following a rate monotonic scheduling scheme. The execution
delay of tasks is modeled by a delay loop of no
instructions. We ran each task set for 10 s of simulated time. At
a nominal rate of 100 MIPS simulated by the reference ISS, this
corresponds to 1000 million NOP instructions. Task sets have
been generated to cover various task weight range sunder
different total system utilizations. We analyzed the accuracy of
our approach by comparing the response times of periodic tasks
in the reference ISS with our host-
were back-annotated into host-

Fig.8.Error Rate Performance Comparison

Compiled models directly from measurements taken when
running on the ISS. Model error was measured as the average
absolute difference in individual task response times overall

ol.2Issue IV, April 2014
ISSN: 2321-9653

SCIENCE AND

conventional model under different
Accuracy is analyzed by comparing results

eference ISS [15] modeling a
single core MIPS Malta platform running a Linux 2.6 kernel
configured with preemption and high resolution timers.

The experimental setup consists of randomly generated
periodic tasks with uniformly distributed periods over and task
weights over for small (S), for large (L), and for medium (M)
tasks. The priority of tasks is assigned inversely to their periods
following a rate monotonic scheduling scheme. The execution
delay of tasks is modeled by a delay loop of no-operation (NOP)
instructions. We ran each task set for 10 s of simulated time. At
a nominal rate of 100 MIPS simulated by the reference ISS, this
corresponds to 1000 million NOP instructions. Task sets have
been generated to cover various task weight range sunder

erent total system utilizations. We analyzed the accuracy of
our approach by comparing the response times of periodic tasks

-compiled simulator. Delays

Comparison chart

Compiled models directly from measurements taken when
running on the ISS. Model error was measured as the average
absolute difference in individual task response times overall

www.ijraset.com

INTERNATIONAL JOURNAL
ENGINEERING

tasks and task iterations.Table 1 shows that the comparative
analysis for error rate. Table summarizes the task set properties
and compares the accuracy and performance of our predictive
RTOS (P-RTOS) model with that of a conventional model at
four different back-annotation granularities.

We can observe that the highest possible accuracy is
achieved using the P-RTOS model. This is equivalent to a
conventional model at 1 s granularity, which loses a large
amount of accuracy at coarser granularities. Table 1
the comparative analysis for error rate. N
we would expect to see zero errors on the predictive model, our
previous experience has shown [14] that remaining errors are
caused by OS context switch overheads and non
of a real Linux system not included in our RTOS mode
terms of simulation performance, an average simulation speed
of 67 GIPS is achieved on the P-RTOS model. This is 233 times
faster than the original OS model at a granularity of 1 s and
similar to the original model at 1 ms granularity.In the
conventional OS model, designers are responsible for choosing
the timing granularity to achieve acceptable accuracy and
performance. However, selecting the proper granularity is not
straightforward.For example, using the granularities of 1 s and
10 s, the same accuracy is provided while the former simulates
10 times faster than the latter. In addition, the lack of a reference
platform for many applications makes it impossible to find a
reliable granularity.

Vol

JOURNAL FOR RESEARCHIN APPLIED SCIENCE
ENGINEERING TECHNOLOGY (IJRASET)

Page 488

that the comparative
nalysis for error rate. Table summarizes the task set properties

and compares the accuracy and performance of our predictive
RTOS) model with that of a conventional model at

est possible accuracy is
RTOS model. This is equivalent to a

conventional model at 1 s granularity, which loses a large
at coarser granularities. Table 1 shows that

the comparative analysis for error rate. Note that although
we would expect to see zero errors on the predictive model, our
previous experience has shown [14] that remaining errors are
caused by OS context switch overheads and non-ideal behavior
of a real Linux system not included in our RTOS model. In
terms of simulation performance, an average simulation speed

RTOS model. This is 233 times
faster than the original OS model at a granularity of 1 s and
similar to the original model at 1 ms granularity.In the

onal OS model, designers are responsible for choosing
the timing granularity to achieve acceptable accuracy and
performance. However, selecting the proper granularity is not
straightforward.For example, using the granularities of 1 s and

uracy is provided while the former simulates
10 times faster than the latter. In addition, the lack of a reference
platform for many applications makes it impossible to find a

Fig.9. CPU Loading Time Performance Comparison

The table plots the tradeoff between average accuracy
and simulation speed over all task sets. Fig 7 shows that the
overview of the hardware implementation. As can be seen
decreasing the timing granularity results in higher accuracy but
comes at a loss in simulation performance. By contrast, our
predictive model provides both fast and accurate results
regardless of the timing granularity. In order to evaluate our
approach under realistic conditions with HW/SW interactions,
we also simulated a task set compo
applications from the automotive category of the MI Bench
suite.

Fig.10.Hardware Setup.

ol.2Issue IV, April 2014
ISSN: 2321-9653

SCIENCE AND

Fig.9. CPU Loading Time Performance Comparison chart.

The table plots the tradeoff between average accuracy
and simulation speed over all task sets. Fig 7 shows that the
overview of the hardware implementation. As can be seen
decreasing the timing granularity results in higher accuracy but

simulation performance. By contrast, our
predictive model provides both fast and accurate results
regardless of the timing granularity. In order to evaluate our
approach under realistic conditions with HW/SW interactions,
we also simulated a task set composed out of a subset of
applications from the automotive category of the MI Bench

Fig.10.Hardware Setup.

www.ijraset.com Vol.2Issue IV, April 2014
ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCHIN APPLIED SCIENCE AND
ENGINEERING TECHNOLOGY (IJRASET)

Page 489

Benchmarks were converted to execute periodically
and concurrently based on rate monotonic scheduling policy,
where task Susan (edge) was modified to interact with an FPGA
bystreaming its outputs over the system bus. The resulting task
set was simulated for 500 s.

CONCLUSION

We presented a predictive RTOS model designed for host-
compiled software simulation of real-time periodic task sets.
The simulator automatically adjusts the granularity of back-
annotated delays by predicting the next task preemption point.
Our model combines very fast simulation speed with error-free
scheduling, which makes host-compiled simulators suitable for
rapid, early evaluation of the real-time performance of periodic
task systems within a HW/SW co-simulation context. In this
work, we focused on solutions for avoiding errors in the
preemption model. We have started to integrate this approach
into our full host-compiled processor model and system
simulator, which support sporadic tasks and inter- and intra-
processor task communications. In the future, we plan to include
models of cache, pipeline, and other dynamic effects that
influence preemption costs, task execution times and hence,
accuracy of overall real-time scheduling behavior.

REFERENCES

[1] ParisaRazaghi and Andreas Gerstlauer,”Predictive OS
Modeling for Host-Compiled Simulation of Periodic Real-Time
Task Sets,” IEEE Embedded Systems Letters, Vol. 4, No. 1,
March 2012.

[2] J. Ceng, W. Sheng, J. Castrillon, A. Stulova, R. Leupers, G.
Ascheid, and H.Meyer, “A high-level virtual platform for early
MPSoC software development,” , Sep. 2009.

[3] K. Lin, C. Lo, and R. Tsay, “Source-level timing annotation
for fast and accurate TLM computation model generation,”
ASP-DAC, Jan. 2010.

[4] T. Meyerowitz, A. Sangiovanni-Vincentelli, M. Sauermann,
and D. Langen, “Source-level timing annotation and simulation
for a heterogeneous multiprocessor,” DATE, Mar. 2008.

[5] H. Posadas, J. A. Adamez, E. Villar, F. Blasco, and F.
Escuder, “RTOS modeling in SystemC for real-time embedded
SW simulation: A POSIX model,” DAES, vol. 10, no. 4, Dec.
2005.

[6] J. C. Prevotet, A. Benkhelifa, B. Granado, E. Huck, B.
Miramond, F. Verdier, D. Chillet, and S. Pillement, “A
framework for the exploration of RTOS dedicated to the
management of hardware reconfigurable resources,”
Reconfigurable Computing and FPGAs, 2008.

[7] A. Bouchhima, I. Bacivarov, W. Yousseff, M. Bonaciu, and
A. Jerraya, “Using abstract CPU subsystem simulation model
for high level HW/SW architecture exploration,” ASPDAC, Jan.
2005.

[8] G. Schirner, A.Gerstlauer, and R. Dömer, “Fast and accurate
processor models for efficient MPSoC design,” TODAES, vol.
15, no. 2, Feb. 2010.

[9] M. Krause, D. Englert, O. Bringmann, and W. Rosenstiel,
“Combination of instruction set simulation and abstract RTOS
model execution for fast and accurate target software
evaluation,” CODES+ISSS, Oct. 2008.[10] R. S. Khaligh and
M. Radetzki, “Modeling constructs and kernel for parallel
simulation of accuracy adaptive TLMs,” DATE, Mar. 2010.

[11] G. Schirner and R. Dömer, “Introducing preemptive
scheduling in abstract RTOS models using result oriented
modeling,” DATE, Mar. 2008.

[12] F. Singhoff, J. Legrand, L. Nana, and L. Marce, “Cheddar:
A flexible real time scheduling framework,” ACM SIGAda Ada
Letters, vol. 24, no. 4, pp. 1–8.

[13] RTSIM: Real-Time Simulator [Online]. Available:
http://rtsim.sssup.it

[14] P. Razaghi and A. Gerstlauer, “Host-compiled multicore
RTOS simulator for embedded real-time software
development,” DATE, Mar. 2011.

[15] OVP: Open Virtual Platform [Online]. Available:
http://www.ovpworld.org

www.ijraset.com

INTERNATIONAL JOURNAL
ENGINEERING

[16] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.
Mudge, and R. B. Brown, “MiBench: A free, commercially
representative embedded benchmark suite,” presented at the
WWC Dec. 2001.

[17] P. Razaghi and A. Gerstlauer, “Automatic timing
granularity adjustmentfor host-compiled software simulation,”
ASPDAC, Jan. 2012.

AUTHORS PROFILE

Vinothini Narayanan1 received the Bachelor of
Engineering in Electrical and Electronics
Engineering from P.S.N.A. College of
Engineering & Technology., Dindigul,
University Chennai in 2010.Currently doing
Master of Engineering in Embedded Systems in
RVS CET, Dindigul, and Anna

Chennai and worked as a Lecturer in K.Ramakrishnan College
of Engineering in Trichy for the period of two years. And have
published research papers in various International Journal and
International Conference. Her research area includes control
systems, Embedded Automotive Networking with CAN, power
electronics, embedded systems.

Uma Maheswari T2 received the Bachelor of
Engineering in Electrical
Engineering from P.S.N.A. College of
Engineering & Technology., Dindigul in 2004
and received Master of Engineering in Power
Electronics & Drives from P.S.N.A. CET,
Dindigul in 2008. And currently working as

Assistant Professor in RVS CET, Dindigul for past five years.
And have published research papers in various International
Journal and International Conference.Her research area includes
power electronics, and power system, power quali
voltage engineering.

.
Kannan K3received the Bachelor of Engineering
in Electrical and Electronics Engineering from

Vol

JOURNAL FOR RESEARCHIN APPLIED SCIENCE
ENGINEERING TECHNOLOGY (IJRASET)

Page 490

[16] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.
R. B. Brown, “MiBench: A free, commercially

representative embedded benchmark suite,” presented at the

[17] P. Razaghi and A. Gerstlauer, “Automatic timing
compiled software simulation,”

eceived the Bachelor of
Engineering in Electrical and Electronics
Engineering from P.S.N.A. College of
Engineering & Technology., Dindigul, and Anna
University Chennai in 2010.Currently doing
Master of Engineering in Embedded Systems in

and Anna University
and worked as a Lecturer in K.Ramakrishnan College

of Engineering in Trichy for the period of two years. And have
International Journal and

International Conference. Her research area includes control
systems, Embedded Automotive Networking with CAN, power

eceived the Bachelor of
neering in Electrical and Electronics

Engineering from P.S.N.A. College of
Engineering & Technology., Dindigul in 2004
and received Master of Engineering in Power
Electronics & Drives from P.S.N.A. CET,
Dindigul in 2008. And currently working as an

nt Professor in RVS CET, Dindigul for past five years.
And have published research papers in various International

Her research area includes
power electronics, and power system, power quality and High

received the Bachelor of Engineering
in Electrical and Electronics Engineering from

RVS College of Engineering & Technology., Dindigul in 2006
and received Master of Engineering in Power Electronics &
Drives from S.V.C.E Chennai in 2009. And currently working
as an Assistant Professor in RVS CET, Dindigul for past five
years. And have published research papers in various
International Journal and International Conference.
area includes power electronics, power
quality.

Sankar M4 received the Bachelor of Engineering
in Electrical and Electronics Engineering from
PSNA CET,Madurai Kamaraj University,
Dindigul in 2001, received Master of
Engineering in Applied Electronics from
RVSCET,Anna University in
Master of technology in Computer

Information Technology from MS University in 2012. Currently
pursuing Ph.D., in Information and
in Anna University. And currently working
department in RVS CET, Dindigul. And having experience of
12 years. And have published research papers in various
International Journal and International Conference.
area includes power electronics, power system, and power
quality.

**

ol.2Issue IV, April 2014
ISSN: 2321-9653

SCIENCE AND

RVS College of Engineering & Technology., Dindigul in 2006
and received Master of Engineering in Power Electronics &

n 2009. And currently working
as an Assistant Professor in RVS CET, Dindigul for past five

And have published research papers in various
International Journal and International Conference.His research

, power system, and power

eceived the Bachelor of Engineering
lectronics Engineering from

,Madurai Kamaraj University,
Dindigul in 2001, received Master of
Engineering in Applied Electronics from

University in 2006 received
Master of technology in Computer and

Technology from MS University in 2012. Currently
CommunicationEngineering

in Anna University. And currently working as Head of
l. And having experience of

And have published research papers in various
International Journal and International Conference.His research
area includes power electronics, power system, and power
