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Abstract—Round robin arbiter (RRA) is a critical block in nowadays designs. It is widely found in System-on-chips and 
Network-on-chips. The need of an efficient RRA has increased extensively as it is a limiting performance block. In this paper,we 
deliver a comparative review between different RRA architectures found in literature. We also propose a novel efficient RRA 
architecture. The FPGA implementation results of the previous RRA architectures and our proposed one are given, that show 
the improvements of the proposed RRA. 
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I. INTRODUCTION 

The arbiter is a critical and widely used module in many SoC applications. When more than one agent, such as processing blocks, is 
sharing one resource, such as a channel, a buffer, or a switch port, an arbiter is used to assign this resource to one agent at a time. 
One of the most important features in an arbiter is the fairness, which represents how equally the resource is assigned to the different 
requesters. Therefore, the fairness is classified into three categories: _ Weak fairness: In which every request will eventually end up 
with a grant.  Strong fairness: The average number of grants each requester will have is equal, when calculated over a sufficient 
number of arbitrations. _ FIFO fairness: The requesters get the grants in the order they request it.  
Arbiters have many types that differ in fairness. The first type is the fixed priority arbiter in which the priority does not change over 
time; Instead, it is assigned linearly to the requester. It does not grantee any fairness; the highest priority requester can block other 
requesters. The second type is the variable priority arbiter. In this type, the priority changes from cycle to cycle to provide fairness. 
Variable priority arbiters  are classified into oblivious arbiters and round-robin arbiters. In oblivious arbiters, the generated priority 
is independent of the last grant; instead, it depends on the last cycle priority. Hence, simple circuits, such as shifters, are used to 
generate the next priority, but oblivious arbiters give a weak fairness. Round- Robin Arbiters (RRAs) provide strong fairness by 
assigning the lowest priority to the last served requester. So the generated priority vector is a shifted version of the grant vector [1]. 
RRAs are broadly used in network routers. Network routers are responsible for redirecting packets from the sender node to the 
receiver node. They consist of crossbar switches, virtual channels and queues. The crossbar switch is responsible for connecting 
input ports with output ports. Many input ports may request to send packets to the same output port simultaneously.  
So an arbitration circuit is needed by crossbar schedulers to decide which input port will be granted to pass to the output port. 
Crossbar schedulers are usually implemented using round-robin arbiter to avoid input ports starvation [2].In this paper, we study the 
performance of different architectures of RRAs in term of speed and area over FPGA, and then we propose a novel RRA 
architecture that provides significant improvements over previous architectures. The paper is organized as follows. Section II 
presents a literature review of different RRAs found in literature. The proposed arbiter is introduced in Section III, while the results 
are showed in Section IV. Finally, we conclude in Section V. 
 

II. LITERATURE REVIEW 
A. Round-robin arbiter (RRA) 
In this section, we will review the different architectures of the round-robin arbiter (RRA) found in literature. Generally, the RRA 
consists of two main parts; the arbitration logic which generates the grant signals, and the priority update circuit which promotes the 
next input in line, after the last granted input, to the highest priority. A. Baseline arbiter The basic RRA consists of a group of cells, 
a cell for each request-grant pair, as shown in Fig. 1 [1]. Each cell keeps a priority flag to indicate that it has the highest priority. 
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Only one cell should be initialized with an active priority flag. The highest priority cell generates a grant signal corresponding to its 
request signal. If there is no request at this cell, the priority should be transferred to the next cell through the Carry-out signal 
(Cout). Carry-out signal of each cell is connected to the Carry-in (Cin) signal of the next cell, and the last cell’s Cout is connected to 
the first cell’s Cin so that the priority propagates from a cell to another. In case of no requests at all, the priority will propagate 
through all the cells back to the cell that has the old priority and the priority will not change.This wrap-around results in an 
undesirable combinational loop. Most static timing analyzers cannot properly analyze 
designs containing such loops. So synthesis tools are unable to optimize these designs.  
 
B. Timing speculative arbiter 
This arbiter limits the priority propagation to a fixed number of cells (s) [3]. If the priority needs 
to propagate longer than the (s) cells, the arbitration is pipelined. The propagation is limited by connecting each cell with the next 
(s) cell, i.e. a connection from the cell i to i+s. If there are no requests in the cells from i to i+s, the priority will be transferred to cell 
i+s directly in order to start the propagation from it in the next cycle. If no requests at all, the priority remains at the cell i. To 
distinguish between the pipeline case (requests beyond i+s) and the idle case (no requests), an extra signal (I) is added. (I) is the 
NOR of all input requests to detect an idle arbitration case. This architecture is faster than the baseline RRA but it still has a 
combinational loop. 

 
 
C. Acyclic arbiter 
To avoid the cyclic implementation, [4] proposed an acyclic RRA. In acyclic RRA, the wraparound between the last and the first 
cell is removed and it is replaced by a chain of fixed priority cells as shown in Fig. 2. The carry signals propagate 
the priority to the next cells if there is no requests at the higher priority cells. Instead of connecting the last carry signal with 
the first cell, the last cell propagates the carry to the fixed priority cells, in case it has the priority and has no request. This 
implementation avoids the combinational loop but it has a long critical path due to the carry propagation through both variable  
and fixed priority cells 

.  



www.ijraset.com                                                                                                                  Volume 4 Issue III, March 2016 
IC Value: 13.98                                                                                                                   ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET: All Rights are Reserved 
947 

D. Priority-encoder based arbiter 
The RRA can be built from priority encoders (PEs) [5]. A priority encoder is a fixed priority arbiter in which the first input has the 
highest priority. 1) Exhaustive PE arbiter: In this architecture, N PEs are used to make an N-bit RRA. The request vector is rotated 
and inputted to each PE, the rotation is done by wiring connections, so that each PE has a different request line on its first input, the 
highest priority position. Then a multiplexer selects one among these PEs according to the priority vector. This architecture requires 
large area of silicon especially for large values of N. 
 
E. Dual-path PE arbiter 
In [5], a dual-path PE architecture is introduced. It exploits two PEs in parallel to achieve roundrobin algorithm. The first PE 
searches for an active request starting from the highest priority bit to the last bit, it doesn’t cycle back to the first bit. This is 
accomplished by disabling the requesters leading the highest priority request. This is done by coding the priority vector with a 
thermometer code and then masking it with the request vector. On the other side, the request vector is entered normally on the other 
PE without any masking. Both PEs work in parallel and then a multiplexer is used to choose between their outputs. The second PE 
is selected if there is no active requests after masking the request vector, so the multiplexer can be reduced as shown in Fig. 3. The 
priority update circuit is complex since the grant vector is in one-hot encoding and the priority is thermometer coded, so the grant 
vector needs to be thermometer encoded before updating the priority. 
 
F. Parallel prefix arbiter 
This architecture is proposed in [6]. Instead of using multiple fixed priority arbiters, this architecture generates each grant signal as a 
fully combinational function of all the bits of the request and the priority vectors. This architecture is fast but it 
is not scalable for a higher number of requests.  

III. PROPOSED ARBITER 
Fixed priority arbiter has small area and high frequency over other arbiters, but it does not guarantee fairness between requests. On 
the other hand, round-robin arbiters consume more area and have a low operating frequency because of the priority propagation 
from location to another, but they do grantee fairness between requests. 

 
In our arbiter (priority-select arbiter), in order to elevate the operating frequency we divided the n-bit arbiter to n/k units, each unit 
consists of a k-bit round-robin arbiter and a k-bit fixed priority arbiter with a multiplexer to select between the two arbiters as shown 
in Fig. 4. The priority propagation direction is from the least bit to the most bit (from right to left) and back to the least bit again. 
When dividing n-bit requests to n/k groups, only one group (which contains the priority bit) needs to have a programmable priority, 
which we will refer to as the priority group. The remaining groups will have a fixed priority located at the least bit. Therefore, the 
multiplexer selects round-robin arbiters for the priority group while the remaining multiplexers select the fixed priority arbiters. 
Starting from the priority group, each group will block the following group’s grants if it has at least one grant. For a k-bit round-
robin arbiter, if the priority was at bit m, where 0_m_k-1, the bits i preceding m (0_i_m-1) should have a priority lower than all 
other group’s bits. To do so, the priority of round-robin arbiter shouldn’t propagate from the most bit to the least bit , which also 
enhances the frequency, hence the Round Robin arbiter will only respond to requests from the priority bit to the most bit. If there are 
any requests before the priority bit, and no requests in all other bits, all groups will generate no grants, including round-robin arbiter 
of priority group, in that case, the output of the fixed priority of the priority group will be selected. 
For example, assume we have 24 bits arbiter (from bit 0 to 23) divided into 3 groups (from group 0 to 2), each of 8 bits as shown in 
Fig. 5, and the priority was at bit 12, and requests 9 to 11 were active. Group 1 will be the priority group and the multiplexer of 
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group 1 will select round-robin arbiter, while other groups multiplexer will select fixed arbiter. However, the round-robin arbiter of 
priority group will generate no grant, as the priority will not propagate from bit 15 to bit 8, and other groups also will not generate 
grants as they have no requests. In this case, the fixed arbiter of the priority group will be active and the grant bit 9 is set. 

 

The k-bit round-robin arbiter can have any RRA architecture after simplifying it to remove the cyclic search, as we have mentioned 
that the carry propagation from the most bit to the least bit is not allowed. We choose the exhaustive PE architecture as the used k-
bit RRA. The k-bit exhaustive PE RRA is fast but occupies a large area as it consists of k kbit PEs. But after removing the cyclic 
search, the k k-bit PEs are reduced to [k, k-1, k-2, ..., 2, 1]-bit PEs which implies significant decrease in the area used. 
 

IV. RESULTS 
In this section, the implementation results of the previous RRA architectures and our proposed architecture (priorityselect arbiter) 
are discussed. We have implemented all the different architectures stated in Section II, except the designs 
which contain a combinational loop, among with the proposed one. The implementation is done on Virtex-5 FPGA (part xc5vlx50t-
3ff665, speed grade -3). The implementation results are obtained by Xilinix ISE 14.6 tool. A summary of all implementation results 
is presented in Table I and Table II. Table I shows the area, in LUTs, and the maximum operating frequency, in MHz, of the 
previous architectures implemented on Virtex-5 for different number of requesters. The results assert that the parallel prefix and the 
exhaustive PE arbiters are not scalable, as their areas grow exponentially, but they have the highest operating frequency among the 
others. Table II shows the implementation results of the proposed arbiter for different number of requesters and different group size. 
From the table it is clear that the area increases gradually with the number of requesters, and provides the smallest area when 
compared with previous architectures. Moreover, the proposed arbiter preserves a high operating frequency that exceeds all previous 
architectures for a large number of requesters. The dominant delay in the proposed arbiter is the delay of the unit group, however, 
with increasing the number of arbiters, the critical delay moves to the control circuit which controls the selection of the unit group 
multiplexer, which leads us to an optimization problem that provides a degree of freedom to select the suitable group unit size for a 
given number of requesters. 

 
A comparison between our proposed arbiter, priority-select, and other arbiters is shown in Fig. 6 and Fig. 7. Fig. 6 shows the area of 
the implemented arbiters for different number of requesters. It shows that the proposed arbiter gives the lowest area among all the 
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previous arbiters for large number of requesters. The configuration of the priority-select arbiter shown in the figure is as follows: 
k=2 for [4, 8]-bit arbiter and k=8 for [16, 32, 64]-bit arbiter (i.e. k is the group unit size). The maximum operating frequencies of the 
implemented arbiters are shown in Fig. 7. At large number of requesters, the proposed arbiter gives the highest maximum frequency. 
Both exhaustive PE and parallel prefix gives nearly the same performance but at the expense of area as shown in Fig. 6. The 
priority-select configuration is as follows: k=2 for [4, 8]- bit arbiter and k=8 for [16, 32, 64]-bit arbiter. 

 
V. CONCLUSION 

We deliver a comparative review between different round robin architectures found in literature. We also propose a novel efficient 
RRA which provides significant improvements over the previous RRA architectures. For a large number of requesters e.g. 64, the 
proposed arbiter gives the highest maximum frequency while occupying half the area of the nearest performance existing arbiter.  
 
A. Synthsis Report 

1. Device utilization summary: 
Selected Device: 3s250etq144-4 
Number of Slices: 84 out of 2448 3% 
Number of Slice Flip Flops: 9 out of 4896 0% 
Number of 4 input LUTs: 163 out of 4896 3% 
Number of IOs: 20 
Number of bonded IOBs: 20 out of 108 18% 
Number of GCLKs: 1 out of 24 4% 
 
B. Timing Report 
Speed Grade: -4 
Minimum period: 13.074ns (Maximum Frequency: 76.488MHz) 
Minimum input arrival time before clock: 13.895ns 
Maximum output required time after clock: 4.863ns 
Maximum combinational path delay: No path found 
Timing Detail: 
All values displayed in nanoseconds (ns) 
Total memory usage is 190712 kilobytes 

VI. PERFORMANCE ANALYSIS 
Three basic steps are involved in the design of an arbiter: modeling, logic verification, and synthesis. The design is first Modeled 
and may be represented in schematic graphs. The model is then described in Verilog HDL and the logic can then be verified by 
using simulation tool modelsim 6.3 version. Finally, the design can be mapped, to be synthesized and reduce delay and increase 
clock frequency. The synthesis tool used is XST synthesis, which optimizes a design constrained by timing. The same design can 
achieve a higher clock frequency. When comparing different design strategies of the same logic implementation, timing is used as 
the primary target in this project. As we see from comparison table the speed of the proposed work is being increased by 10.785 
MHz in frequency and decrease in delay by 0.092ns 

VII. CONCLUSION 
The project on efficient speed implementation of round robin arbiter using verilog is been achieved. PPE arbiter design Using Islip 
algorithm which has much better performance than other practical algorithms under variant traffic models, without adding much 
complexity. Islip algorithm meets the criterion of a good scheduling algorithm good performance, fast and simple to implement. 
PPE arbiter design increases the system speed. It‟s a much better approach than the static priority arbiter design. The project is been 
done using Xilinx ISE 9.1 with SPARTAN 3E family , XC3S500E device,FT256 package logically verified and then synthesized in 
XST synthesis tool and simulation in modelsim.6.3.using verilog HDL. The result obtained is increase in frequency by 10.78 MHz 
and delay is decrease by 0.092 ns. Thus the aim of the project is being achieved. The frequency of the Round Robin arbiter can 
further be increased if more better synthesis tool and simulation tool is being used such Synopsys. 
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