
 

4 IV April 2016



www.ijraset.com                                                                                                                  Volume 4 Issue IV, April 2016 
IC Value: 13.98                                                                                                                   ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET: All Rights are Reserved 
1110 

Comparative Study of Various Binary Floating 
Point Multiplier Techniques Using VHDL 

Rupali Umekar#1, Dr.Vasif Ahmed*2 
Department Of EXTC, B.N.C.O.E Pusad, India      

Abstract-In computing, floating point describes a method of representing an approximation of a real number in a way that can 
support a wide range of values. Low power consumption and smaller area are some of the most important criteria for the 
fabrication of DSP systems and high performance systems. Optimizing the speed and area of the multiplier is a major design 
issue. However, area and speed are usually conflicting constraints so that improving speed results mostly in larger area in 
implementation of the system. This project presents study of various binary floating point multiplier techniques using various 
Algorithms of an IEEE 754 single precision floating point multiplier targeted for Altera. Now a days there is a scope of advance 
technology in which the design of more efficient multiplier is dominant part of digital system. This objective of this study is to 
find algorithm which offers higher speed and low power consumption. Subsequently, tradeoffs between area and delay 
parameters for each multiplier design are also analyzed for the different schemes. This approach is well-suited for several 
complex and portable VLSI circuits. In this work, the comparative study of Booth multiplier, Dadda multiplier, Wallace Tree 
multiplier are carried out by analyzing area, power and delay characteristics with particular importance on low power 
consumption. 
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I. INTRODUCTION 

Floating point numbers are one possible way of representing real numbers in binary format; the IEEE 754 standard presents two 
different floating point formats, Binary interchange format and Decimal interchange format. Multiplying floating point numbers is a 
critical requirement for DSP applications involving large dynamic range. FPGAs are increasingly being used in the high 
performance and scientific computing community to implement floating-point based hardware accelerators. FPGAs are generally 
slower than their application specific integrated circuit (ASIC) counterparts, as they can't handle as complex a design, and draw 
more power. However, they have several advantages such as a shorter time to market, ability to re-program in the field to fix bugs, 
and lower nonrecurring engineering cost. Vendors can sell cheaper, less flexible versions of their FPGAs which cannot be modified 
after the design is committed. The development of these designs is made on regular FPGAs and then migrated into a fixed version 
that more resembles an ASIC.  
 The floating point is a method of representing an approximation of a real number in a such way that can support a tradeoff between 
range and precision. A number is, in general, represented approximately to a fixed number of significand digits. The term floating 
point  numbers is derived from   the fact that there is no fixed number of digits before and after the decimal point, that is, the 
decimal point can float.  

 
Fig. 1 : Floating Point Format 

 It consists of a one bit sign (S), an eight bit exponent (E), and a twenty three bit fraction (M or Mantissa). An extra bit is added to 
the fraction to form what is called the significand. If the exponent is greater than 0 and smaller than 255, and there is 1 in the MSB 
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of the significand then the number is said to be a normalized number.  
 

II. PROPOSED WORK 
Most of the DSP applications need floating point numbers multiplication. In binary format, floating point numbers are represents 
two floating point formats, Binary interchange format and Decimal interchange format. The binary formats are called ‘Single 
precision’ and ‘Double precision respectively. 
 The single-precision (32-bit) floating-point multiplier performs multiplication of two inputs which are floating-point numbers. At 
the beginning, both inputs must be converted from decimal number into floating point representation based from IEEE 754 standard 
before doing the multiplication. Once the floating point multiplication is complete, the output which is in IEEE 754 floating point 
representation will convert back to decimal number. 
A multiplication of two floating-point numbers is done in the following 5 steps: 
Step 1: Multiplication of mantissas 
Step 2: Normalization 
Step 3: Addition of the exponents 
Step 4: Calculation of the signStep 5: Composition of all results 

 
Fig. 2. 32-bit floating point multiplier data flow 

Fig. 2 describes the 32-bit floating point multiplier data process flow. Each input is split into three modules (sign, exponent, and 
mantissa) so that can be easily to route into corresponding components. Signs from input A and B are connected directly to XOR 
gate to generate the final sign result, ‘0’indicates positive sign and ‘1’ indicates the negative sign. Meanwhile, exponents and 
mantissas from input A and B are connected to exponent adder and multiplier respectively. The 48- bit output from multiplier must 
pass through to the normalizer to perform rounding to nearest 23-bit of mantissa. In exponent adder, both exponents from A and B 
are added before subtract to bias value which is 127. The carry signal from normalizer is also connected to exponent adder to adjust 
the exponent value, which will be the final 8-bit exponent result. All the output from signer (1-bit), exponent adder (8-bit), and 
normalize (23-bit) are then combined to form 32-bit floating point multiplication product as the final results. The last 23 bits of 
mantissa in 32-bit floating point number is given by two operands for multiplication. The explicit ‘1’ added as the leading bit of 
both mantissas to fit into 24-bit multiplier unit.  
 

III. COMPARATIVE STUDY OF VARIOUS MULTIPLIER TECHNIQUES 
 A comparatively study of various multiplier techniques depending on the area, power consumption and speed of multiplication is 
carried out which is discussed below: 

A. Wallace Multiplier 
A Wallace tree multiplier is an efficient hardware implementation of a digital circuit that multiplies two integers devised by an 
Australian computer scientist Chris Wallace in 1964. Wallace tree reduces the no. of partial products and use carry select adder for 
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the addition of partial products. 

 
Fig 3 8 bit×8 bit Wallace tree multiplier 

Step 1: Generation of Partial products 
The first step is similar to normal binary multiplication that we use. This step generates Partial products (PPs). The elements a0b1 to 
a3b3 are called partial products (pp). Each PP has its place weight in powers of 2. Weight of a partial product aibj is given by 2x 
where x=i+j. 
Step 2: Reduction Stages: 
Now the generated partial products are added using ‘Half adders’ and ‘Full adders’. Following guide lines are followed in the 
addition process. 
1) If the column has only one partial product it can be directly propagated to the output in the same column (sum output of same 

weight). No reduction is necessary. 
2) If the column has two partial products only, a half adder is to be used to generate sum output of same weight and carry output of 

next weight. 
3) If the column has 3 or more PPs, we have to use at least one full adder. As many full adders are used as possible because, a full 

adder will reduce 3 PPs at a time into sum and carry. 
4) Addition of any two PPs results in two outputs: 
i) The sum bit   
ii) The carry bit 
5) Sum bit is of weight 2x and carry bit is of weight 2x+1 where ‘x’ is the weight of partial products of that addition operation. 
6) After addition, the sum bit remains in same column for next stage reduction and carry bit propagates to next left column for 

next stage reduction. 
7) When only two rows of PPs are left over, for the final reduction stage, we use a parallel adder to give the final output 

B. Dadda Multiplier 
Dadda proposed a sequence of matrix heights that are predetermined to give the minimum number of reduction stages. To reduce 
the N by N partial product matrix, dada multiplier develops a sequence of matrix heights that are found by working back from the 
final two-row matrix. In order to realize the minimum number of reduction stages, the height of each intermediate matrix is limited 
to the least integer that is no more than 1.5 times the height of its successor. The process of reduction for a dadda multiplier is 
developed using the following recursive algorithm 
1) Let d1=2 and dj+1 = [1.5*dj], where dj is the matrix height for the jth stage from     the end. Find the smallest j such that at least 

one column of the original partial product matrix has more than dj bits. 
2) In the jth stage from the end, employ (3, 2) and (2, 2) counter to obtain a reduced matrix with no more than dj bits in any column. 
3) Let j = j-1 and repeat step 2 until a matrix with only two rows is generated. This method of reduction, because it attempts to 

compress each column, is called a column compression technique. Another advantage of utilizing Dadda multipliers is that it 
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utilizes the minimum number of (3, 2) counters. {Therefore, the number of intermediate stages is set in terms of lower bounds: 
2, 3, 4, 6, 9 . . .For Dadda multipliers there are N2 bits in the original partial product matrix and 4.N-3 bits in the final two row 
matrix. Since each (3, 2) counter takes three inputs and produces two outputs, the number of bits in the matrix is reduced by one 
with each applied (3, 2) counter therefore}, the total number of (3,2) counters is #(3, 2) = N2 – 4.N+3 the length of the carry 
propagation adder is CPA length = 2.N–2. 

 
Fig. 4 Dot diagram for 8 by 8 Dadda Multiplier 

The number of (2, 2) counters used in Dadda’s  reduction method equals N-1.The calculation diagram for an 8X8 Dadda multiplier 
shown in fig. 4. Dot diagrams are useful tool for predicting the placement of (3, 2) and (2, 2) counter in parallel multipliers. Each IR 
bit is represented by a dot. The output of each (3, 2) and (2, 2) counter are represented as two dots connected by a plain diagonal line. 
The outputs of each (2, 2) counter are represented as two dots connected by a crossed diagonal line. The 8 by 8 multiplier takes 4 
reduction stages, with matrix height 6, 4, 3 and 2. The reduction uses 35 (3, 2) counters, 7 (2, 2) counters, reduction uses 35 (3, 2) 
counters, 7 (2, 2) counters, and a 14-bit carry propagate adder. The total delay for  the generation of the final product is the sum of 
one AND gate delay, one (3, 2) counter delay for each of the four reduction stages, and the delay through the final 14-bit carry 
propagate adder arrive later, which effectively reduces the worst case delay of carry propagate adder. The decimal point is between 
bits 45 and 46 in the significand IR. The critical path starts at the AND gate of the first partial products passes through the full adder 
of the each stage, then passes through all the vector merging adders. 

C. Booth Multiplication Algorithm for Radix-4 
The Booth multiplication algorithm was developed by a British electrical engineer, physicist and computer scientist Andrew Booth 
in 1950 [6]. One of the solutions of realizing high speed multipliers is helps to decrease the number of subsequent calculation stages. 
The original version of the Booth algorithm (Radix-2) had two drawbacks.  They are 
1) The number of add subtract operations and the number of shift operations    become variable and become inconvenient in 

designing parallel multipliers. 
2) The algorithm becomes inefficient when there are isolated 1’s. These problems are overcome by using modified Radix-4 Booth 

multiplication algorithm.  
This algorithm scans strings of three bits as follows: 
1) Extend the sign bit 1 position if necessary to ensure that n is even.  
2) Append a 0 to the right of the LSB of the multiplier. 
3) According to the value of each vector, each Partial Product will be 0, +y, -y, +2y or -2y.Radix-4 booth encoder performs the 

process of encoding the multiplicand based on multiplier bits. It will compare 3 bits at a time with overlapping technique. 
Grouping starts from the LSB, and the first block only uses two bits of the multiplier. 
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The state diagram of the Radix-4 Booth multiplier is shown below. It consists of eight different types of states and during these 
states we can obtain the outcomes, which are multiplication of multiplicand with 0,-1 and -2 consecutively. The pictorial view of the 
state diagram presents various logics to perform the Radix-4 Booth multiplication in different states as per the adopting encoding 
technique. 
The state diagram of the Radix-4 Booth multiplier is shown below. It consists of eight different types of states and during these 
states we can obtain the outcomes, which are multiplication of multiplicand with 0,-1 and -2 consecutively. The pictorial view of the 
state diagram presents various logics to perform the Radix-4 Booth multiplication in different states as per the adopting encoding 
technique. 

  
Fig. 5 Booth Radix-4 FSM State Diagram 

The design has five input ports ("clk", “n_reset”, “start”, “mcand”, and "mplier”) and two output ports (“done” and “product”). The 
multiplier requires a start pulse to initialize the FSM with values from the “mcand” and “mplier” inputs and put the FSM in the 
“BUSY” state. Math steps can be sequenced by using the “start” and “done” signals between instantiations. 

IV. SIMULATION RESULT 
The simulation results for corresponding inputs are shown in Fig. The design has been simulated by using ModelSim. 
 Consider inputs to the floating point multiplier are: 
 A = CC697C16 
 B =  8AC7C609 
The output of the multiplier is 17B63413 
Fig. 6, 7 and 8 show the snapshots taken from ModelSim after the timing simulation of the floating point multiplier for Wallace 
multiplier, Dadda multiplier and Booth multiplier 

 
Fig. 6 Simulation result - Wallace multiplier 



www.ijraset.com                                                                                                                  Volume 4 Issue IV, April 2016 
IC Value: 13.98                                                                                                                   ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET: All Rights are Reserved 
1115 

 
Fig. 7 Simulation result - Dadda multiplier 

 
Fig. 8 Simulation result - Booth multiplier 

Table 2 - Comparison table for various floating point Multipliers 

Algorithm Area Power(mW) Delay(ns) 

Wallace 1172 78.05 8.40 

Dadda 1233 78.09 9.18 

Booth 430 78.08 9.6 
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Fig  9. Area graph for floating point multiplier 
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V. CONCLUSION 
 Here we have studied different multipliers and concluded that booth multiplication gives good performance in terms of area. 
Wallace multiplication is one of the suitable algorithm to be used to design the high speed  multiplier because it has less gate delay 
and able to perform such complex multiplication faster . 
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