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Abstract:The ability to determine the orientation of a device is of fundamental importance in context-aware and 
location-dependent mobile computing. By analogy to a traditional compass, knowledge of orientation through the 
Cricket compass attached to a mobile device enhances various applications, including efficient way-finding and 
navigation, directional service discovery, and “augmented-reality” displays.
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1. CRICKET COMPASS
The Cricket compass reports position and orientation 

indoors for a handheld, mobile device, and informs an 

application running on the device of the position and 

orientation in a local coordinate system established by the 

fixed set of beacons[1]. The operating environment in the 

Cricket architecture is instrumented with active beacons, 

each of which broadcasts its own known position over an 

RF channel together with an ultrasonic pulse. One RF 

receiver and several passive ultrasonic position receivers 

are precisely placed on compass board. Software running 

on-board uses the differentials in distances reported by the 

ultrasonic receivers to infer the orientation or heading of the 

device. Cricket requires a small number of beacons at 

known positions in each room to instrument a building, but 

enables location and orientation for a passive handheld 

device without requiring any user motion [1].

2. DESIGN OF CRICKET COMPASS

Fig: 3.1: Cricket Compass
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Figure 3.1 shows a user device with attached compass hardware 

in a room with beacons placed on the ceiling. When the device 

is held parallel to the horizontal plane, θ is the angle formed by 

the heading direction shown, with the point where the 

perpendicular from beacon B intersects the horizontal plane. We 

are interested in precisely estimating θ [3].

The basic idea is to use one RF receiver to receive 

coordinate information from the beacons, and multiple, carefully 

placed, ultrasonic receivers on the compass attached to the 

device to obtain the differential distance estimates of a beacon to 

each ultrasonic receiver. θ is a function of the differential 

distance of the linear distance of the compass from the beacon, 

and of the height of the beacon (ceiling) above the plane of the 

compass. We obtain per-beacon linear distance estimates by 

differencing the arrival times of coupled RF and ultrasonic 

signals sent from each beacon. To obtain the height of the 

beacon from the compass, we estimate the position coordinates 

of the compass from the position coordinates disseminated by 

multiple nearby beacons.

3. THEORY OF OPERATION

Figure 4.1  shows a beacon B, and a compass with two 

ultrasonic receivers, R1 and R2, which are located at a distance 

L apart from each other. The angle of rotation of the compass, θ, 

with respect to the beacon B, is related to the difference in 

distances d1 and d2, where d1 and d2 are the distances of 

receivers R1 and R2 from B. The vertical and horizontal 

distances from the center of the compass to B are denoted by z 

and x respectively. Figure 4.1 shows the beacon B from Figure 1 

projected on to the horizontal plane along which the compass is

aligned. In the figure 2, x1 and x2 are the projections of 

distances d1 and d2 on to the horizontal plane. We assume that 

the compass is held parallel to the horizontal plane.

From Figure 2:
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Fig. 4. 1: Angle of Orientation

From Figure 4.2:

x1²= (L/2 cosθ)² + (x – L/2 sinθ)²

x2²= (L/2 cosθ)² + (x + L/2 sinθ)²

=>x2²-x1²= 2Lxsinθ

Substituting for x1
2 and x2

2 from Equations (1) and (2), we get:
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Equation (4) implies that it suffices to estimate two quantities in 

order to determine the orientation of the compass with respect to 

a beacon: (i) (d2 - d1), the difference in distances of the two 

receivers from the beacon, and (ii) z/d, the ratio of the height of 

the beacon from the horizontal plane on which the compass is 

placed to the distance of the beacon from the center of the 

compass. In practice, however, no measurements are perfect. 

Our goal is to estimate each of these quantities with high 

precision, so as to produce a sufficiently accurate estimate of θ.

One way of precisely estimating (d2 - d1) would be to 

precisely measure d1 and d2 separately, but that is easier said 

than done. Consider, for example, a situation where L = 5cm, 

and θ = 10°, with a beacon at a distance of 2 meters and a height 

of 1 meter from the receivers. From Equation (4), the value of 

(d2 - d1) in this case is only ≈ 0:6cm, which is about an order of 

magnitude smaller than what current technologies can achieve in 

terms of linear distance estimates [8]. Since our goal is to devise 

a compass with physically small dimensions, comparable in size 

to handheld PDAs, and still achieve high directional accuracy, 

we need an alternative method to estimate this differential 

distance. Our solution to this problem tracks the phase 

difference between the ultrasonic signals at two different 

receivers and processes this information. We find that this 

approach allows us to obtain differential distance estimates with 

sub- centimeter accuracy.

The second quantity, z/ d, is estimated by determining 

the (x, y, z) coordinates of the compass with respect to the plane 

formed by the beacons (the x-y plane). We do this by placing 

multiple beacons in a room and estimating the time it takes for 

the ultrasonic signal to propagate between them and the 

compass. However, because the speed of sound varies with 

ambient temperature and humidity, we must estimate this 

quantity as well.

Fig. 4.2: Rotated Compass along Horizontal Plane

4. OUR CONTRIBUTION: EXPERIMENTAL SET UP

Measured Distance:

In back propagation algorithm, we are taking three different 

layers- input, hidden and output layer. Each layer consists of a 

single node. The measured distance values act as the inputs to 

the input layer neurons. The 19 different measured distance 

values in terms of meters are [-1.552,-1.544, -1.504, -1.392, -

1.213, -0.985, -0.843, -0.516, -0.245, 0.021, 0.200, 0.477, 0.749, 

0.931, 1.075, 1.256, 1.389, 1.459 and 1.485].

Actual distance values are the target outputs for the 

corresponding measured distances. The target values are [-

1.600, -1.576, -1.504, -1.386, -1.226, -1.028, -.0.800, -0.547, -

0.278, 0, 0.278, 0.547, 0.800, 1.028, 1.226, 1.386, 1.504, 1.576 

and 1.600].

Weights:

The acceleration or retardation of the input signals is modeled 

by the weights. An effective synapse which transmits a stronger 

signal will have a correspondingly larger weight while a weak 

synapse will have smaller weights. Thus, weights here are 
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multiplicative factors of the inputs to account for the strength of 

the synapse. These are any random values between 0 and 1. 

Here we have taken the weight to be 0.2. [4]

Learning Rate:

Learning rate coefficient determines the size of the weight 

adjustments made at each iteration and hence influences the rate 

of convergence [4]. Poor choice of the coefficient can result in a 

failure of convergence. We should keep the coefficient constant 

through all the iterations for best results. If the learning rate 

coefficient is too large, the search path will oscillate and 

converges more slowly than a direct descent. If the coefficient is 

too small, the descent will progress in small steps significantly 

increasing the time to converge. It ranges between 0 and 1.

Momentum Term:

Adding some inertial or momentum to the gradient expression 

improves the rate of convergence. This can be accomplished by 

adding a fraction of the previous weight change to the current 

weight change [4]. The addition of such a term helps to smooth 

out the descent path by preventing extreme changes in the 

gradients due to local anomalies. Here, α is the momentum 

coefficient. The value of α should be positive but less than 1. 

Typical values lie in the range of 0.5-0.9. 

5.1 Differential distance error reduction:

For differential distance error reduction we have taken into 

consideration the existing actual and measured differential 

distance[9]. The array A consists of the measured d2-d1 values 

and is taken as input to the input layer. The array B consists of 

the actual d2-d1 values and is assumed to the required output. 

The momentum factor is taken as m=0.4 and the learning 

coefficient is taken as n=0.3. The  change in the weight between 

the input and the hidden layer is taken to be dv=0. The change in 

weight between the hidden layer and the output layer is taken to 

be dw=0. To perform the back propagation random weights are 

initialized as v=[0.1] and w=[0.2]. Then the back propagation 

algorithm is applied on the inputs to get the required output 

thereby reducing the differential distance error. Here we have 

performed 10 iterations and observed that the differential 

distance is gradually reduced by the application of the back 

propagation algorithm.

The values used as the input and the required output are:

A=[-1.552, -1.544, -1.504, -1.392, -1.213, -0.985, -0.843, -

0.516, -0.245, -0.021, 0.200, 0.477, 0.749, 0.931, 1.075, 1.256, 

1.389, 1.459, 1.485]

B=[-1.6, -1.576, -1.504, -1.386, -1.226, -1.028, -0.800, -0.547, -

0.278, 0,0.278, 0.574, 0.800, 1.028, 1.226, 1.386, 1.504, 1.576, 

1.6]

X-axis represents the number of iterations performed and Y-axis 

represents the differential distance error in meters. After 10 

iterations we observed that the distance error reduced from 3.12 

m to 0.0029 meters which is a significant improvement by the 

application of Back Propagation algorithm.
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Fig. 5.1: Differential Distance Error reduction by Back 

Propagation Algorithm

5.2 Angular error reduction:

For the reduction in the angular error we have taken into 

consideration the calculated angle range in [9]. Then we have 

applied the back propagation algorithm to reduce the angular 

error and results show that angular error have been minimized in 

each set of experiments. For better analysis we have performed 

different sets of experiments. 

The angle range is the same as discussed in [9] i.e -90 to 90 

degree.

We have taken the derived Theta estimates as the reference and 

used the back propagation algorithm to obtain the new Theta 

and plot the difference. The observations show that the 

algorithm has reduced the error which in turn will help in 

accurate position estimation in Wireless Sensor Network. 

The estimated theta value used in the algorithm are:

Estimated Theta: [-76.21, -74.021, -70.350,-60.485, -49.319,-

38.021,-31.786,     -18.894, -8.821, 0.57,7.184,17.359, 27.929, 

35.573, 42.202, 51.756,    60.317, 65.759, 68.196]

The differential distance ‘d’ is generated randomly and the value 

of reduced theta after applying the back propagation algorithm 

are:

DelTheta: [-14.9905, -14.7666, -14.0751, -12.8779, -11.1345, -

8.8218, -6.0651,          -3.190, -0.8979, 0, 0.8979, 3.4747, 

6.0651, 8.8218, 11.1345, 12.8779, 14.0751, 14.7666, 14.9905]
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Fig. 5.2 Reduced Estimated Angle as compared to Cricket 

Compass

6 CONCLUSION

Thus, we can conclude that by applying the Artificial Neural 

Network the differential distance error as well as the angular 

error can be reduced remarkably and we can conclude that this 

device can further be enhanced to be used in outdoor 

localization thereby reducing the error in the position estimation 

in the presence of noisy environment. 
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