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Abstract-- This paper presents the various methods for the spectral analysis of signals for the stationary as well as non-stationary 
signals. Due to non-stationary characteristics of the signals, it has been always a challenge to achieve time frequency 
distribution of such signals. Between the various techniques of signal analysis, this paper uses Fourier transform, Short time 
Fourier transform, wavelet transform, and Hilbert Huang transform for the analysis of stationary as well as non-stationary 
signals. A comparison between these frequency transformation techniques has been made by analyzing four types of test signals.
The result shows the best method for the analysis of each type of test signal.
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I. INTRODUCTION

The signals are generated by the systems and they contain
the information about the systems from where they are 
originated. To extract information from signals and reveal the 
underlying dynamics that corresponds to the signals, proper 
signal processing technique is needed. Typically, the process 
of signal processing transforms a time-domain signal into 
another domain, with the purpose of extracting the 
characteristic information embedded within the time series 
that is otherwise not readily observable in its original form. So 
the spectral analysis techniques are used to extract the 
maximum possible information from the signal so that 
maximum analysis of the system can be made in both time as 
well as frequency domain. 

Depending upon the analysis techniques, the signals can 
be broadly classified under four categories. These four types 
are based on whether the signal is stationary or non-stationary, 
whether it contains single frequency component or multiple 
frequency components. The four signal types are listed in 
Table I along with their properties in the time domain. 

This paper explains the impact of classical Heisenberg’s 
uncertainty principle [4], which states that the product of 
temporal and frequency resolution is constant, over the 
various signal analysis techniques for each type of signal as 
given in Table I. This paper gives the suitabletechnique for 
each type of signal that gives the best results in terms of signal 
analysis.

TABLE 1: Types of signals and their time domain properties

Type Time Domain properties
Type I Stationary with single frequency 

component
Type II Stationary with multiple frequency 

components
Type III Non-stationary with single frequency 

component at a time

Type IV Non-stationary with multiple frequency 
components
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FIG.1: FOUR TYPES OF SIGNAL AS ELABORATED IN TABLE 
1

The signals Type I-IV are created as per the following 
equationsX*(t) = sin(2π6t) for 0 < "< 6X**(t) = sin(2π4t) + sin(2π6t)+ sin(2π8t) for 0 < "< 6X***(t) = sin(2π4t$) + sin(2π6t%)+ sin(2π8t&) for 0 < t$< 22 < t%< 44 < t&< 6X*,(t)= sin(2π4t$) + sin(2π6t$) + sin(2π6t%)+ sin(2π8t%)+ sin(2π8t&)+ sin(2π10t&) for 0 < t$< 22 < t%< 44 < t&< 6
As stated in table I, the type I signal is a stationary signal 
containing frequencies of 6 Hz throughout the signal duration. 
The type II signal is also a stationary signal that contains 
frequencies of 4, 6 and 8Hz throughout the signal. The type III 

signal is a non-stationary signal containing 4 Hz for first 2 
seconds, 6Hz for next 2 and 8Hz for last 2 seconds. Last 
signal i.e Type IV is a non-stationary signal containing 4 and 
6 Hz, 6 and 8 Hz, and &8Hz and 10 Hz for two seconds 
duration each 

II. FOURIER TRANSFORM

The Fourier transform is probably the most widely applied 
signal processing tool in science and engineering. It reveals 
the frequency composition of a time series x(t), by 
transforming it from the time domain into the frequency 
domain. In 1807, the French mathematician Joseph Fourier 
found that any periodic signal can be presented by a weighted 
sum of a series of sine and cosine functions [8].
The Fourier transform of a signal x(t) can be expressed asX(f) = ; x(t)e'%π-3dt∞

'∞
The inverse Fourier transform that transforms signal back to 
its original domain, is given by [1]x(t) = ; X(f)e%π-3df∞

'∞
The signals which are obtained from data acquisition system 
experimentally are generally sampled at discrete time 
intervalsΔt, instead of continuously, within a total 
measurement time T. Such a signal x(n), can be transformed 
into frequency domain using Discrete Fourier Transform 
(DFT), defined as [4],X(k) = < x(n)e'0%π21/++'$

1(#
Where N is the period of the signal, n is the number of sample.
The inverse Discrete Fourier Transform can be obtained byx(n) = 1N< X(k)e0%π21/++'$

1(#
Fourier transform is actually the convolution of signal x(t) or 
x(n) with sine and cosine function as understood from above 
equations. This convolution actually measures the similarity 
between signal x(t) and corresponding sine and cosine terms 
and then calculates the average over entire time range. This 
process is repeated after changing the frequency of sine and 
cosine terms. This can be graphically illustrated from the Fig. 
2.
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FIG.2: ILLUSTRATION OF FOURIER TRANSFORM

While calculation of the Fourier transform or Discrete Fourier 
transform, the phenomenon of leakage and aliasing may play 
its role. Leakage occurs, when signal is extended periodically 
for performing DFT. This can be solved by using windows in 
DFT, however use of window may contribute towards 
frequency information of the signal. The aliasing occurs when 
the Shannon’s sampling theorem is not satisfied. This causes 
the original frequency component to appear at the incorrect 
location. This can be easily solved by keeping the sampling 
frequency more than twice of highest frequency present in the 
signal.

The above said statements can be verified by applying the 
Fourier transform on the four types of signal as given in Table 
1

The Fig. 3 shows the Fourier transform of the signals Type I-
IV. From the figure it is quite clear the Fourier transforms 
fails to provide the precise value of the frequency present in 
the signal. This is due to the leakage effect as explained 
earlier. Moreover, Fourier transform also do not reveals how 
the frequency components vary with time. It is evident from 
the plot of Type II and Type III which appear to be similar in 
frequency domain; however they are quite distinct in time 
domain. So here we can conclude that the Fourier transform 
fails to provide frequency information with respect to time 
variation. This is considered a major drawback of Fourier 
transform and hence it is not suitable for non-stationary 
signals which vary with time

FIG.3: FOURIER TRANSFORM OF SIGNALS AS 

ELABORATED IN TABLE 1.

III. SHORT TIME FREQUENCY TRANSFORM

The most nearest solution to above stated problem is the Short 
time Frequency transform. It utilizes the concept of the 
window of certain length that glides through the time axis and 
helps to calculate the Time Localized Fourier transform [3]. 
This concept was first introduced by Dennis Gabor in his 
paper titled “Theory of communication,” published in 1946
[3].
The Short Time Fourier Transform (STFT) is given bySTFT(τ, f) = ;x(t)g(t − τ)e'%π-3dt
The STFT employs a time window g(t) of certain duration that
is centered at time τ. For each specific time τ, the time 
localized Fourier transform is calculated. Then this window 
moves along the time axis and again the Fourier transform is 
calculated. This process is continued till complete signal is 
analyzed.This can be easily understood from the Fig. 4.
The most important and crucial factor for calculation of STFT 
is the duration of the window used. According to Heisenberg 
Uncertainty principle the precise knowledge of frequency 
present at the particular instant cannot be known, so this leads 
to the fact that reducing of the window size results in poor 
frequency resolution and good frequency resolution requires 
wide time window.
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The above said fact is evident when the STFT is employed 
over signals Type II-IV with different window durations. 

FIG.4: ILLUSTRATION OF SHORT TIME FOURIER 
TRANSFORM

The STFT is applied at above said signals with three window 
lengths of 500ms, 700ms and 1 sec.

Fig. 5: 
STFT of Type II signal with window of 500ms

Fig. 6: 
STFT of Type II with window of 700 ms

FIG.7: STFT OF TYPE II WITH WINDOW OF 1 SEC

FIG.8: STFT OF TYPE III WITH WINDOW OF 500 MS
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FIG.9: STFT OF TYPE III WITH WINDOW OF 700 MS

FIG.10: STFT OF TYPE III WITH WINDOW OF 1 SEC

FIG.11: STFT OF TYPE IV WITH WINDOW OF 500 MS

FIG.12: STFT OF TYPE IV OF WINDOW OF 700 MS
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FIG.13: STFT OF TYPE IV WITH WINDOW OF 1 SEC

From the Fig 5-7, it is quite clear that STFT with small 
window duration is not capable of separating the close 
frequencies. As we increased the window duration from 500 
ms to 1 second, the STFT clearly separated the three different 
frequencies. As Type II is a stationary signal,so STFT with a 
large window of normal Fourier Transform is best suited for 
this type of signal.

From Fig. 8-10, the role of Heinsenberg uncertainty principle 
is quite evident. In Fig 8, when window was of 500 ms 
duration, the frequency resolution is quite poor but, these 
frequencies are much clearly separated in time. As soon as, 
we increase the duration of window to 700ms, see Fig 9, the 
frequency resolution improved but, the time resolution 
degraded. Further increase in window size to 1 sec, Fig 10, 
improved frequency resolution more but again it degraded the 
time resolution. Similar results were seen in Fig 11-13, with 
Type IV signal, as we applied STFT with 500ms, 700 ms and 
1 second window duration.

So here we can conclude that, the window size is crucial 
deciding factor in evaluation of STFT. It needs to be small if, 
frequencies separation is large, but time separation is small. 
Similarly, window size needs to be small, if frequencies 
separation is large, but time separation is small. 

Now as in STFT, the window size is fixed, so it works against 
it, and appears to be its drawback. The inherent drawback of 

the STFT motivates researchers to look for other techniques 
that are better suited for processing non-stationary signals.

IV. WAVELET TRANSFORM

In contrast to the STFT technique where the window size is 
fixed, the wavelet transform enables variable window sizes in 
analyzing different frequency components within a signal[10]
This is realized by comparing the signal with a set of template 
functions obtained from the scaling (i.e., dilation and 
contraction) and shift (i.e., translation along the time axis) of a 
base wavelet ψ(t) and looking for their similarities, as 
illustrated in following equation.

wt(s, t) = 1!s; x(t)ψ(t − τs∞

'∞
)dt

Where the symbol s > 0 represents the scaling parameter, 
which determines the time and frequency resolutions of the 
scaled base wavelet ψ(t-τ)/s. The specific values of s are 
inversely proportional to the frequency[12]. The symbol t is 
the shifting parameter, which translates the scaled wavelet 
along the time axis. The symbol ψ*( ) denotes the complex 
conjugation of the base wavelet ψ(t). The wavelet transform is 
best illustrated by the following Fig. 14

FIG.14: ILLUSTRATION OF WAVELET TRANSFORM
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FIG.15: WAVELET TRANSFORM OF TYPE III

As it can be seen from the figure that wavelet transform 
utilizes multi-resolution technique so it uses small window for 
high frequencies and large window for low frequencies. It is 
the scaling factor that plays the role in Multi-resolution 
analysis.[18-22]

For use of wavelet transform, the choice of mother wavelet is 
very important. Incorrect choice may result in wrong 
decomposition of the signal [14]. So there are different mother 
wavelets for different type of signals [15]

V.HILBERT HUANG TRANSFORM (HHT)

Hilbert Huang Transform (HHT) is named after David Hilbert. 
These are the statistical tools that useindependent component 
analysis.
The Hilbert-Huang transform utilizes empirical mode 
decomposition (EMD) for the signal analysis. HHT is the
emerging novel technique of signal decomposition having 
many interesting properties [23]. In particular, HHT has been 
applied to numerous scientific investigations, such as 
biomedical signals processing, geophysics, image processing, 
structural testing, fault diagnosis, nuclear physics and so on
[24-27]. In order to facilitate the reading of this paper we will
introduce in detail the Hilbert-Huang transformation, which is 
a relatively novel technique.

HHTuses EMD to decompose the signal into various intrinsic 
mode functions (IMF) and then Hilbert-Huang transform is 
applied to each IMF, therefore time frequency distribution is 
obtained.
Hilbert Huang transform gives the instantaneous frequency by 
differentiating the instantaneous angle with respect to time. 
The key to this is that signal should contain only single 
frequency component at a time so it require EMD to 
decompose the signal, in order to get correct HHT.
The empirical mode decomposition (EMD) method is 
developed from the simple assumption that any signal consists 
of different simple intrinsic mode oscillations.
The essence of the method is to identify the intrinsic mode 
functions (IMFs) by their characteristic time scale in the 
signal and then decompose the signal accordingly [25]. The 
characteristics time scale is defined by the time lapse between 
the successive extremes.
To extract the IMF from a given data set, a sifting process is 
implemented as follows. First, identify all the local extrema, 
and then connect all of the local maxima by a cubic spline line 
as the upper envelope.
Then, repeat the procedure for the local minima to produce the 
lower envelope [26]. The upper and lower envelopes should 
cover all the data between them.
Their mean is designated m1(t) , and the difference between 
the data and m1(t) is h1(t) , i.e.,

x(t)-m1(t)=h1(t)

To check if h1(t) is an IMF, we demand the following 
conditions: 

 h1(t) should be free of riding waves, i.e., the first 
component should not display under-shots or over-shots 
riding on the data and producing local extremes without 
zero crossings.

 To display symmetry of the upper and lower envelope 
with respect to zero.

 Obviously the number of zero crossing and extremes 
should be the same in both functions.

The sifting process has to be repeated as many times as it is 
required to reduce the extracted signal to an IMF. In the 
subsequent sifting process steps, h1(t) is treated as the data. 
Then

h1(t) – m11(t) = h11(t)

Time

Time-Frequency Analysis with CWT
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Wherem11(t) is the mean of the upper and lower envelopes 
h1(t). This process can be repeated up to k times; h1k(t) is then 
given by [26]

h1(k-1)(t) – m1k(t) = h1k(t)

Having obtained the IMFs by using EMD method, one applies 
the Hilbert transform to each IMF component [26]

H[h$1(t)] = 1
π
; h$1(t)t− τ

dτ
∞

'∞

The Hilbert transform is then used to achieve the analytical 
signal which is given by [26]z/(t) = h$1(t) + j H[h$1(t)]
The analytical signal can alos be expressed asz/(t) = a/(t)exp (jω/(t))
With amplitudes ai(t) and phase θi(t) defined by

a/(t) = :h$1%(t) + H%[h$1(t)]
θ/(t) = arctan ()[.45(3)].45(3) )

The instantaneous frequency can be calculated as

ω/(t) = dθ/(t)dt
This helps us to represent the amplitude and the instantaneous 
frequency in a three-dimensional plot, in which the amplitude 
is the height in the time frequency plane. This time-frequency 
distribution is designated as the Hilbert-Huang spectrum.[26]

FIG.16: HHT OF TYPE I SIGNAL

FIG.17: HHT OF TYPE II SIGNAL
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FIG.18: HHT OF TYPE III SIGNAL

FIG.19: HHT OF TYPE IV SIGNAL

HHT of various signals has been given from the Fig. 16-19. 
From the Fig. 16 and 17, it can be inferred that, the HHT 
transform works well for those signals that contains only 
single frequency at a time, no matter whether it is stationary 
or non-stationary. From the Fig 17 and 19, we can see some 
extra frequency harmonics. These are due to errors introduced 
while decomposition of the signals such as end effects. So it is 
clear that, HHT performs poor for those signals that contain 
multiple frequencies at a time. The comparative analysis of all 
the techniques is given in Table II

Type Time Domain properties Best suitable 
transformation 

technique

Type I Stationary with single 
frequency component

Hilbert Huang 
transform, Fourier 
transform

Type II Stationary with multiple 
frequency components

Wavelet transform

Type III Non-stationary with single 
frequency component at a 
time

Hilbert Huang 
transform

Type IV Non-stationary with 
multiple frequency 
components

Wavelet transform

VI. CONCLUSION

This paper presents a comparative study of some Frequency 
transformation techniques. These time-frequency techniques 
are applied tofour types of test signals and their results are 
compared.

It is concluded that for stationary signals Fourier transform 
allows us to clearly analyze the signal in its frequency 
transform without much variations. In case of Non-stationary 
signals, that do not have large frequency variations, STFT 
performs well, although there is always a compromise 
between frequency and time resolution. In case the non-
stationary signals that have large frequency variations in term 
of sampling frequency, wavelet transform performs better 
than other techniques. The signals that contains single 
frequency component, the Hilbert Huang transform is the best 
approach, as it is independent component analysis technique 
and it shows clear cut frequency variation with time.
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