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Abstract— Hyperspectral imaging collects and processes information from across the electromagnetic spectrum. The goal of 
hyperspectral imaging is to obtain the spectrum for each pixel in the image of a scene, with the purpose of finding objects, 
identifying materials, or detecting processes. The existing approaches uses optimization-based method for simultaneous fusion 
and unsupervised segmentation of hyperspectral remote sensing images by exploiting redundancy in the data. Then the weights 
are optimized to improve those statistical characteristics. The optimal recovery of the weight matrix additionally provides useful 
information in segmenting the hyperspectral data set spatially. But it is not suitable for multi spectral data set. In the proposed 
system uses fuzzy k-means clustering for simultaneous visualization and segmentation of hyperspectral data. 
Keywords—Hyperspectral visualization,segmentation,TV-norm, Fuzzy kmeans clustering. 

I. INTRODUCTION  
Hyperspectral sensors collect information as a set of 'images'. Each image represents a narrow wavelength range of the 
electromagnetic spectrum, also known as a spectral band. These 'images' are combined to form a three-dimensional (x,y,λ) 
hyperspectral data cube for processing and analysis, where x and y represent two spatial dimensions of the scene, and λ represents 
the spectral dimension (comprising a range of wavelengths). Technically speaking, there are four ways for sensors to sample the 
hyperspectral cube: Spatial scanning, spectral scanning, snapshot imaging, and spatio-spectral scanning. Hyperspectral cubes are 
generated from airborne sensors like the NASA's Airborne  Visible/Infrared Imaging Spectrometer(AVIRIS), or from satellites 
like NASA's EO-1 with its hyperspectral instrument Hyperion. However, for many development and validation studies, handheld 
sensors are used. The precision of these sensors is typically measured in spectral resolution, which is the width of each band of the 
spectrum that is captured. If the scanner detects a large number of fairly narrow frequency bands, it is possible to identify objects 
even if they are only captured in a handful of pixels. However, spatial resolution is a factor in addition to spectral resolution. If the 
pixels are too large, then multiple objects are captured in the same pixel and become difficult to identify. If the pixels are too small, 
then the energy captured by each sensor cell is low, and the decreased signal-to-noise ratio reduces the reliability of measured 
features. The acquisition and processing of hyperspectral images is also referred to as imaging spectroscopy or, with reference to the 
hyperspectral cube, as 3D spectroscopy. There are four basic techniques for acquiring the three-dimensional (x,y,λ) dataset of a 
hyperspectral cube. The choice of technique depends on the specific application, seeing that each technique has context-dependent 
advantages and disadvantages. 
Although hyperspectral data is not sparse in itself, the gra- dient of the data contains many near-zero values. This is due to the 
gradually varying nature of the reflectance spectrum of any material. Minimization of total-variation (TV) norm of a vector 
leads to a representation whose gradient is sparse. Our proposed approach exploits this model of hyperspectral data to estimate a 
weight array having a sparse gradient by minimizing its TV norm. However, we need to minimize the 
3-D TV norm as opposed to the popular 2-D TV norm used in solving the image restoration problem [12]. The difficulty in the 
minimization of the TV norm due to its non-differentiability is overcome using the majorization-minimization algorithmic ap- 
proach suggested by Oliveira et al. in [13], which approximates the TV-norm function by an upper bound quadratic function and then 
minimizes it. Imposing the piecewise-constant smoothness constraint on the weights helps in preserving and enhancing the edges. 
Optimization of the overall cost function is posed as an unconstrained optimization problem and solved by a simple gradient descent 
algorithm. 
Having estimated the  weight array,  we  obtain  the  fused image using a weighted sum of all the spectral bands and the 
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segmentation map by using the k-means clustering algorithm on the weight array. A point to note is that this formulation is very 
different from end-member unmixing [14] and does not seek to express the pixel spectra as a weighted sum of standard spectra of 
elemental materials. It requires no training or learning. 
The organization of this paper is as follows. In Section II, we look at some recently suggested algorithms for the problem of 
visualization of hyperspectral images. Section III presents in detail the formulation of the proposed algorithm. In Section IV, we 
present test results of our algorithm on standard hyperspec- tral data sets and contrast our results with the currently existing 
algorithms using standard quality metrics for both fusion and segmentation process. 

II. SURVEY O F RELATED WORK 
Hyperspectral data processing typically demands enormous computational resources in terms of storage, computation, and 
input/output throughputs, particularly when real-time processing is desired. In this paper, a proof-of-concept study is conducted on 
compressive sensing (CS) and unmixing for hyperspectral imaging. Specifically, we investigate a low-complexity scheme for 
hyperspectral data compression and reconstruction. In this scheme, compressed hyperspectral data are acquired directly by a device 
similar to the single-pixel camera based on the principle of CS. To decode the compressed data, we propose a numerical procedure 
to compute directly the unmixed abundance fractions of given endmembers, completely bypassing high-complexity tasks involving 
the hyperspectral data cube itself[1]. The visualization approach and the fusion model, presented in this paper, are derived from the 
now well-known preservation of spectral distance criterion which measures the agreement between the distance of spectrums 
associated to each pair of pixels and their perceptual color distance in the final fused image to be displayed. This intuitive criterion 
was already used for estimating an informative color mapping, allowing the efficient visualization of hyperspectral images[2]. We 
focus on the restoration approach and propose a novel method based on sparse representation over learned dictionaries. The 
dictionaries for PAN image and low resolution MS image are learned from source images adaptively. Furthermore, a novel strategy 
is designed to construct the dictionary for high-resolution MS image from the dictionaries for PAN image and low-resolution MS 
image[3]. A bilateral filtering-based approach is presented for hyperspectral image fusion to generate an appropriate resultant 
image. The proposed approach retains even the minor details that exist in individual image bands, by exploiting the edge-preserving 
characteristics of a bilateral filter. It does not introduce visible artifacts in the fused image[4]. Hyperspectral image visualization is 
usually provided as a functionality in hyperspectral image analysis software such as Multispec, ENVI, Geomatics, TnTlite, 
HyperCube, and HIAT. A direct visualization method is to render the image as a 3-D cube The main problem that we observed is 
that existing methods map spectral samples to unbounded 3-D Euclidean space. After dimension reduction, they all use not only a 
second nonuniform mapping to color space that creates colorful images but also the illusion of salient features that are not present in 
the data[5]. The third method presented was developed specifically to fuse hyperspectral images for visual analysis. This new 
method uses the spatial frequency response (contrast sensitivity) of the human visual system to determine which features in the input 
images need to be preserved in the composite image(s) thus ensuring the composite image maintains the visually relevant features 
from each input image[6]. Several fusion techniques have been developed in the literature for visualization of hyperspectral data. 
The amount of computation needed for such techniques is directly related to the volume of the data. Most of these techniques 
involve a significant amount of computation due to high volume of the data, making the fusion processes slow. We analyze the 
statistical characteristics of this data in order to develop a technique for faster fusion[8]. One of them employs matched-filtering 
based on the spectral characteristics of various materials and is very promising for classification purposes. The information content 
of the hyperspectral bands as well as the quality of the obtained RGB images are quantitatively assessed using measures such as the 
correlation coefficient, the entropy, and the maximum energy—minimum correlation index [9].a new clustering method, but simply 
an efficient implementation of Lloyd's k-means algorithm.The idea of storing the data points in a kd-tree in clustering was 
considered by Moore in the context of estimating the parameters of a mixture of Gaussian clusters. He gave an efficient 
implementation of the well-known EM algorithm. The application of this idea to k-means was discovered independently by Alsabti 
et al., Pelleg and Moore (who called their version the blacklisting algorithm), and Kanungo et al.. The purpose of this paper is to 
present a more detailed analysis of this algorithm[11].The optimization problem was solved using the Euler–Lagrange equation. 
This method, however, does not preserve the edge information in the fused image. The fusion part of the technique proposed in this 
paper is quite similar to this method, but the qualitative goals for fusion have been much improved, and the process has been 
extended to perform simultaneous image segmentation. 

III. EXISTING SYSTEM 
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A. Introduction 
With the advancement in the remote sensing technology, several hundred narrow-band images of the same area on the Earth are 
available. The hyperspectral sensors provide high-resolution spectral information covering the visible and the infrared wavelength 
spectra. This information is collected over contiguous narrow spectral bands by measuring the reflectance response of the surface to 
different wavelengths. The hyperspectral image applications have extensively been researched in the areas of remote sensing, 
environment monitoring, geological surveying, and surveillance due to their distinct advantages in classification and object 
identification. Recently,  hyperspectral imaging has also been found to be extremely useful in surveillance for coastal and cross-
border material transport. However, the analysis of hyperspectral data faces following challenges.  

B. Visualization of Hyperspectral Images 
The process of image fusion aims at the formation of a single image that selectively merges the maximum possible features from the 
source images. In the case of hyperspectral image bands, the images are obtained by sampling a continuous spectrum at narrow 
wavelength intervals (e.g., each channel of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument has a nominal 
bandwidth of 10 nm). As the spectral response of the scene does not vary much over the adjacent bands, extracting specific 
information contained by a particular band is the key to the fusion process. We calculate the value of each pixel of the fused image 
by a normalized weighted average of the pixels among different bands at the corresponding location. The critical part of the 
algorithm lies in choosing appropriate weights representing the subtle information at each location along the available spatial and 
spectral ranges, which indicates selecting different weights for every pixel in each of the image band. We define the weight of the 
particular pixel in the image from the relative importance of the feature with respect to its neighborhood. A smoothing 2-D filter 
removes the slowly varying features from the image, and therefore, subtracting the filtered image from the original image gives the 
important local details in the image. 

C. Image Fusion 
The objective of fusing a subset of the hyperspectral data cube is to obtain a single image that retains the features from all the 
constituent bands as much as possible. The hyperspectral images are generated as the reflectance response of the surface, which 
mainly depends on the properties and composition of the material in the scene. Certain substances exhibit a stronger 
response over a given wavelength range and form strong and sharp features in the corresponding subset of the image cube. On the 
other hand, certain substances have a peak reflectance response over a very narrow wavelength range. These substances form weak 
features, i.e., edges and textures, which are 
seen only in few images. Let I(x, y, λ1) to I(x, y, λM) be the subset of a hyperspectral image cube, containing M images from 
consecutive wavelength bands λ1 to λM. We calculate the weight at each pixel (x, y) for each image, w1 to wM, using the bilateral 
filter as shown in the following: 

wi(x, y) = |୍(୶,୷,஛౟)ି୍ాూ(୶,୷,஛౟)|ା୏
∑ (|୍(୶,୷,஛౟)ି୍ాూ(୶,୷,஛౟)|ା୏)౉
౟సభ

……...(1) 

where IBF is the corresponding bilateral filtered image. K is a positive real number that allows flexibility in the fusion process by 
increasing or decreasing the effect of actual weight components and prevents numerical instability at homogenous regions. 

D. Hierarchical Fusion 
A typical hyperspectral image data set in remote sensing contains a few hundred images to be fused into a single image (for 
grayscale) or three images (for RGB). Combining all the image bands of the given data set together results in assigning very small 
fractional weights to the locations in the each of the image bands. In this procedure, some of the weights are comparable to the 
truncation errors, and hence, some of the minor details may wash out during fusion. Furthermore, the data along the spectral 
dimension are needed for the computation of such fractional weights. Therefore, the procedure requires the entire hyperspectral cube 
to be read into memory. Considering the huge size of a hyperspectral image cube, the memory requirement goes over a few 
hundreds of megabytes e.g., J steps. By generating three fused images at the prefinal stage and assigning them to appropriate color 
channels, we can obtain the RGB representation of the hyperspectral image cube for the tristimulus visualization. 

E. Implementation 
The fusion process is controlled by three parameters σS, σR, and K. The choice of appropriate values of these parameters is necessary 
to achieve better fusion quality 
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Figure 3.1 Scheme of the hierarchical fusion for the hyperspectral image cube 

We calculate the difference between the maximum and minimum values of intensity of a given image data set to find the actual 
intensity range in the image. We choose the value of σR as the fraction of the intensity range to define the edge measure 
σR = α [max (I(x, y, λ)) − min (I(x, y, λ))]………(2) 
where α is set to 0.02 during experiments for all data sets. The choice of σS decides the size of spatial details retained during fusion, 
which is related to the ground-projected instantaneous field of view in remote sensing. 

IV. PROPOSING SYSTEM 

A. Introduction 
Hyperspectral imaging captures the reflectance map of a scene at various wavelengths of light, typically in the range of 0.4–2.5 μm 
with a resolution of 10 nm. Such a high spectral resolution leads to a very large number of image bands that suffer from a lot of 
redundancy of data. The problem of efficient mining of information from such data sets has drawn considerable attention over the 
past few decades. Image fusion and segmentation are two important operations performed on remote sensing hyperspectral data sets. 
Image fusion offers the first step in visualizing a scene in a meaningful way for a human observer, whereas segmentation offers an 
object level description of the scene. In previous studies, many different techniques have been developed to perform these 
operations. Although the end results of the solutions to these two problems, i.e., visualization and segmentation, are different, they 
have a certain common structure associated with them. In both the problems, some measure of spatial and/or spectral distance 
between the pixels can be used to operate on the data set to obtain the output. By exploiting this similarity of structure, we suggest 
here an alternative approach that can perform these tasks simultaneously and in an interdependent manner. Most image fusion 
algorithms aim at extracting the salient features from the hyperspectral data set and combining them into a single image for observer 
interpretation. Traditional methods include the use of techniques such as principle and independent component analysis (ICA) to 
reduce the dimensionality of a data set to produce a small number of bands that capture statistically significant information from the 
data. 

B. Proposed Approach 
We define the following qualitative goals for the image fusion process. 

Highlight salient spatial features from the individual bands without introducing artifacts. 

Enhance the contrast of the image to enable the observer to distinguish between the various features distinctly. 
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Match the intensity range of the image to the range of display device. 

Minimize noise without blurring image features.  

Similar goals for fusion of hyperspectral bands have been defined in the past, although they have not been dealt with concurrently. 
Each of these goals is associated with certain statistical properties of the image. We associate a cost function with these properties 
and minimize it using a gradient descent algorithm. The hyperspectral data is represented as a 3-D cube f(x, y, λ) of size m × n × B. 
The size of each image in the cube ism × n, whereas the total number of spectral bands is B. The fused image is represented by g(x, 
y), and the weights are represented by w(x, y, λ). Sum of the point-wise product between the data and the weights across the spectral 
axis gives the pixel values of the final fused image g(x, y) 

g(x, y) =∑ f(x, y, λ)w(x, y, λ)୆
஛ୀଵ …………………(4.1) 

with 
∑ w(x, y)୆
஛ୀଵ =1∀ (x, y)……………………………(4.2) 

 

Figure:4.1 Proposed System Architecture 
C. Derivation Of Cost Function 
1) Kurtosis Minimization: The Shannon-entropy quantifies the amount of information content in an image. A higher value of 
entropy is desirable in the fused image, which necessitates the fused image to approach a uniform intensity distribution. Out of the 
set of all possible discrete valued probability mass functions without empirical constraints, the uniform distribution has the 
maximum entropy. Thus, in order to maximize the entropy of the image, the histogram of the image must tend to be uniform. Such a 
distribution will exploit the dynamic range of the display device better and provide greater contrast, hence improving the visual 
representation of the image. Kurtosis is a statistical property of a distribution that is closely related to its shape. Kurtosis relates to 
the “peak ness” of a distribution; it is defined as the ratio of the fourth moment around the mean to the square of the variance 

2) Display Range Maximization: The dynamic range of the display device on which the fused image is to be displayed plays an 
important role. In order to avoid under-saturation of dark regions or oversaturation of bright regions in the image, the mean pixel 
value should be placed at the center of the dynamic range of the display device. Such a cost function has been widely used in 
solving the image restoration problem in astrophysical images, known as “MENT” restoration. The following function, which 
penalizes the pixels lying at the extreme ends of the range of image intensity value and pulls them to the mean, is minimized. It also 
pulls the mean of the fused image to the center value of display device’s dynamic range 
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K[g] = ୉[(୥ିஜ)ర]
(୉[(୥ିஜ)మ])మ

 …………………..(4.3) 

where [0,N] is the dynamic range of the display device. Such a cost function was previously used by Kotwal and Chaudhuri [4]. 

3) Target Gradient Fitting : In hyperspectral imaging, the presence of hundreds of bands can be very efficiently used to obtain rich 
spatial details in the fused image. One of our goals is to capture a large number of consistent edge-features from the various spectral 
bands. An elegant solution to this problem for the fusion of multispectral data was suggested by Socolinsky and Wolff [11] and 
further expounded by Piella [10]. Edge information is captured in the gradient-map of an image. Here, we attempt to create a 
“target” gradient map from the data set by extracting the maximal gradient at each pixel location, among all bands. This is done by 
doing a weighted addition of the local geometry at each pixel across all bands. Higher weights are assigned to the bands with greater 
magnitude of gradient. Such a weighted addition ensures that edge information is contributed by all bands and that the larger 
gradient value gets captured in the target gradient map.Using the target gradient, we define the following cost 

M(g) =∑ ∑ g(x, y)log	(୥(୶,୷)
଴.ହ୒ୣ

)୷୶ ……………………(4.4) 

It may be noted that the computation of the target-gradient map needs to be performed only once at the beginning of the 
optimization process and not at each iteration. 

4) Smoothness Constraint: In hyperspectral images, the presence of noise is generally seen to be higher in a few particular spectral 
bands for a given sensor due to errors in its optical system [24]. Several methods have been suggested in the past to identify these 
noisy bands and remove them before processing the data set further [25], [26]. In addition, the noise is seen to occur in a set of 
adjacent row or columns of pixels in these bands and appear as noisy vertical or horizontal lines in the images. The use of the 
“target-gradient” cost term defined earlier in (4.8) captures maximum gradient across all the bands and hence is expected to carry 
over the line-noise to the fused image as well. In order to avoid this, we impose the piecewise constant smoothness constraint on the 
weight array. This piecewise-constant continuity of the weights prevents from giving unduly high or low weights to these sparsely 
occurring noisy image pixels thus reducing the noisy horizontal or vertical lines from occurring in the fused image. The piecewise-
constant continuity is exploited by us for performing unsupervised segmentation as well on the data set, as explained in the next 
section. Piecewise-constant smoothness of weights is achieved by minimizing the 3-D total-variation norm of the weights. 

TV(w) =∑ ටw୶
ଶ + w୷

ଶ + w஛
ଶ

୶,୷,஛ …………… (4.5) 

5) Normalization Of Weights: The sum of the weights along the bands at each pixel location (x, y) should sum to unity. To ensure 
this, we minimize the following cost term 

U =∑ ∑ ቀ൫∑ w(x, y, λ)୆
஛ୀଵ ൯ − 1ቁ

ଶ
୬
୷ୀଵ

୫
୶ୀଵ ……… (4.6) 

Although this does not impose a strict condition on the weights summing to unity, it converts a constrained optimization problem to 
unconstrained optimization for computational benefit. We also put a hard constraint during the iterations to force the weights to 
saturate within the range [0, 1]. 

6) Overall Cost And Optimization: All the cost terms in the previous section are summed together to form the total cost 

C(w) = μKK(w) + μMM(w) + μVV (w) +μQQTV(w) +     μUU(w). ……………………………………….(4.7) 

μi’s are the relative weights, or the optimization step size, allotted to each cost term. There have been a few optimizationbased 
schemes in the literature [4], [9], which have also defined certain cost functions. The proposed cost function is very different in the 
sense that we try to achieve all the goals specified at the beginning of this section. The effectiveness of each term in the cost 
function will be demonstrated in the results section. Furthermore, we estimate the complete pixel weight array w(x, y, λ) by 
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optimizing. 

7) Unsupervised Segmentation: The fusion process aforementioned conveys no information about the spatial distribution of the 
various materials in the scene. This information can be summarized by means of a segmentation map of the data set. A segmentation 
map uniquely labels each group of pixels, which have similar underlying spectral responses. A simple method of achieving this is 
using the k-means clustering algorithm directly on the input data, giving the spectral response at each pixel location as the input to 
the algorithm. This method suffers from many disadvantages. A common problem in hyperspectral data is the possibility of shift in 
the radiometric values at different pixels even for the same underlying material. Due to this, the use of any distance metric in the k-
means algorithm will lead to improper clustering. Furthermore, the presence of noisy bands in the hyperspectral data aggravates the 
problem of incorrect segmentation substantially. However, since the aim in this paper is only to demonstrate the superiority of using 
the weight array over the actual hyperspectral data for segmentation, we have limited ourselves to the use of standard k-means 
algorithm. Without any loss of generality, an improved segmentation performed on the weight array is shown to be a by-product of 
the proposed smoothness constraint on the weight array, any other segmentation scheme may be used in conjunction with the 
proposed optimization scheme. 

V. RESULTS AND DISSCUSSION 

 
Figure:5.1 Fused image 

 
Figure:5.2 Display Range Maximization 

 
Figure :5.3 Gradient Fitting 
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Figure: 5.4 Image After applying smoothness 

 
Figure:5.5 Normalized image 

 
Figure: 5.6  segmentation 

 
Figure:  5.7 Histogram of the Fused Image 



www.ijraset.com                                                                                                            Volume 4 Issue VI, June 2016 
IC Value: 13.98                                                                                                             ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET: All Rights are Reserved 
 

9 

 
Figure: 5.8 Average Gradient Versus Iterations 

 
Figure:5.9  Average Normalized Mean Pixel Values 

 
Figure: 5.10 Average Entropy 
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Figure: 5.11Average Fusion Factor 

 
V. CONCULSION 

This paper presents a new approach for fusion of hyperspectral images that also facilitates a good segmentation. The image fusion 
has been performed by obtaining an optimal weight at each spatial location and at each spectral band. The contribution of this paper 
lies in formulating a refined set of qualitative goals that ensure an enhanced fused image ready to be visualized on a display device. 
These goals have been achieved by associating them with quantitative quality measures of the fused image and optimizing the 
weights to improve them. The problem was posed as an unconstrained optimization problem and solved using a simple gradient 
descent algorithm. The significant improvements that were obtained in our method over previous methods of similar construction 
include the optimization of the entropy of the fused image, which was solved by posing the problem as a kurtosis minimization 
problem, extracting the spatial features in the bands using the closeness of the gradient of the fused image to the “gradient Fitting” 
cost term, and, most importantly, the edge-enhancement and noise removal, which was achieved by imposing a piecewise-constant 
smoothness constraint on the weight array by minimization of its 3-D TV norm. The resulting weight array is also seen to be good 
suited for segmentation than the hyperspectral data set itself because of its piecewise constant nature. 
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