

2 VI June 2014

www.ijraset.com Vol. 2 Issue VI, June 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 47

Server side image string patterns processing
Komal Arora1, Sanjla Sindhwani2

1Assistant Professor, SPGOI College of engineering, MD University, Rohtak (India)
2M.Tech Student, SPGOI, College of engineering, MD University, Rohtak (India)

Abstract— To make the string search more reliable, the images of the string, used as a basis by the search algorithms should
be produced by the same font rendering engine, as is used by the strings in the application under test. So, we need an
algorithm which takes over the rendering and produces the output using System font rendering and font smoothing. So, a
service needs to be developed which can be deployed on the same machine on which the application under test is running
and it provides those images at run time using the font renderer provided by operating system of the system under test.So
now for searching of string, image rendering will happen at the system on which the application under test is running and
will make use of rendering engine provide by the operating system of that machine, in contrast to the earlier scenario where
AWT rendering was happening at the machine where AUTO-UI gets installed.

1. INTRODUCTION

Commercial software product now a days demands high on
quality and reliability. Therefore every organization makes
ample efforts for delivering quality product to customers and
puts lots of efforts in testing the product to ensure quality of
the product to be delivered. Different quality teams for the
product makes use of multiple type of testing infrastructure
and tools to make sure delivery of high quality products.
Quality engineers work in co-ordination with developers to
define different test strategies can be integrated with some test
frameworks which ensures certain quality standards such as
variable assignments, memory leaks, code coverage, unit level
function testing. Quality engineers will have access to the
application code and they will write unit test to verify
application’s functionality at unit level. As the stability of the
application under test increases, these can be very well
integrated with automated build system and automation
execution. Overview reports can be analysed for each of the
builds. So if a functionality break in a particular build, it will
be caught there itself. The second category of test, so called
black box testing, is a different approach which instead of
bringing the extra testing code in the application, the
application is tested from the user’s perspective. The interface
to the application essentially consist of mouse and keyboard
input, and output on the screen. The steps to be performed are
formulated in form of test cases and the result of the same can
be evaluated on screen.

2. PROBLEM ANALYSIS

As already described in the introduction, the problem is that
the string search is unreliable and doesn’t operate uniformly
across all platforms. String search fails many times, with no
specified reasons. Initially, it was the assumption that the
search is not tolerant enough while comparing pixels.

To examine this suspicion, the existing AutoUI code was
debugged and the current implementation of the algorithm
was analyzed step by step. From the debugging and analysis,
it emerged out that the pixel comparison was working
correctly and the correct tolerance was taken into account
while comparing pixels. So there was no issue during
comparison of pixel values. But with further investigations it
was noticed that the color values for many pixels in the
screenshot was different from the one generated for the string
using the AWT rendering engine. In order to confirm this
suspicion, AutoUI code was extended so that the AWT
generated image which was used to search the relevant portion
of the image and the screenshot can be saved to hard disk.

Therefore, there must be other factors that are not taken into
account while creating the image using current rendering
process. Rending of the string, identical to the image from the
screenshot is necessary, as the comparison is happening on
pixel by pixel basis. So, these unknown factors needs to be

www.ijraset.com Vol. 2 Issue VI, June 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 48

uncovered and incorporated while rending the image from
string.

Every operating system has an inbuilt software component
which is used to display text. It is called as “Font Engine or
Font rendering Engine”. It is the assumption that the Font
rendering Engine of each operating System uses different
rendering algorithm and thus produces a different result. To
realize this implementation there are several technologies.
We will make use of Java Servlets for our implementation, as
AutoUI is implemented in Core java, so it will reduce the
effort of learning and maintenance, if the implementation is
being done using Java Servlets. Hereafter, the Web service
will be referred to as “Font rendering service”.

Depicts the generic overview of the infrastructure to be
implemented and Fig depicts the components of each VM, in
which the Application under test will be running and the Font
renderer will be deployed on each VM. After these two
fundamental elements have been defined, there comes the
need to communicate between these.

In a first prototype implementation, there was some shared
directory on a network, which contains folders for each of the
supported OS, which in turn has the font rendering service
order files, in the form of XML documents. Because each
request against the font rendering service starts a new thread
instance of the servlet, a unique thread ID is associated with
the order file. This order file is then read on the VM by the
respective font renderer, which in turn renders the string
described in it.

The rendering result is finally saved as an image in the
network directory, which in turn is again uniquely identified
by the Thread ID. The Font Renderer Service then picks the
image from the network directory and delivers the result to the
requesting client.

The realization of the main features of the software
components that were created in the context of this work is
described below. Since socket communication and build
scripts for all the components have played a significant role,
each has been entered into its own section.

FontRenderer

The task of the “Font Renderers”, which was realized as an
AIR application in Flex, is the rendering of a string. Flex has
a variety of components, which represent texts; the simplest

can be being a Label. The setStyle() method for a label can be
used to set the style properties of the text. This method accepts
a key-value pair as input and can set the values for the
properties which are represented by the key passed as
parameter to the method. Using this we can set properties like
“font Weight”, “font Family”, “font Style” , “ font Size” etc

and the real characteristics of text, as discussed in analysis
part, can be implemented. We have chosen “font Family” to
identify whether a font exist on System or not. If the specified
font exists on the System, then Flex uses “System font
rendering engine” of the machine, on which application is
running, to display text, otherwise Flex embedded Rendering
engine is used to render and display the text. The property
"font Size" still a needs some consideration. Flex renders all
text with 72dpi, which was consistent with the behavior of the
system font rendering engine of Mac systems. On Windows
systems, 96 dpi is assumed by default. This corresponds to
that a 9pt font on Windows XP will correspond to 12pt-font
(96dpi/ 72dpi * 9pt = 12pt) on Mac. So the rendering service
should have this logic inbuilt to take care of this logic.

which implement the interface IBitmapDrawable, to be
converted directly to a bitmap. Such an object is the label
which can be used to render the string. Since the image is to
be sent over a number of socket connections, the use of image
compression is recommended.

To make sure that the quality of the image is not changed, it
must be compressed to a lossless image format, such as PNG
Format. In Flex “PNGEncoder-Class” is available for this
purpose. Unfortunately, it is not possible in Flex to draw a UI
component and set its style properties directly by invoking a
function call. This is due to the single threaded architecture of
Flex. It just works on based of events. So when user calls
setStyle() method on the label to convert it to a bitmap, it
merely fires an event.

www.ijraset.com Vol. 2 Issue VI, June 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 49

Overview of the structure of the backend

Details of contents of VM

This event will be processed only when the component gets
the CPU cycle next time. The priority of updating the display
of a component can be maximized by calling
invalidateDisplayList(), so that it is ensured that they will be
updated directly after the currently working method is
finished.

3.CONCLUSIONS

Overall, the achieved result is a significant improvement over
the old string search. As a by-product, a font rendering
backend is developed, which provides a very simple and
universal web service interface and could be used in any
products which needs to render images from given strings. It
provides significant improvement, e.g., the self-imposed
ceiling of a maximum of one second response time for the
rendering of the average long strings could be significantly
undercut to 80-200ms. This has also reduced the maintenance
efforts of the test scripts, as there is no need to maintain
images for each of the supporting SUT, as was the case
earlier.

Unfortunately, the development in some places lasted
longer than planned. For example, functionalities like
embedding fonts rendering and the event-based socket
communication in Flex expanded beyond the planned time.

REFERENCES

1. Tristan Richardson,Quentin Stafford-Fraser, Kenneth
R. Wood, and Andy Hopper. Vietual network
computing .IEEE internet computing pages 33-38
1998.

2. Richard P. Martin. Heisenbugs and Bohrbugs.
Rutgers University, 2003.
http://www.cs.rutgers.edu/˜rmartin/teaching/spring03
/cs553/papers01/06.pdf

3. Susan Haigh. Optical character recognition as
digitization technology.Network Notes #37, 1996

4. John Zukowski. Java AWT Reference. O’Reilly,
1997. http://www.oreilly.com/catalog/javawt/book/

5. Nabeel Al-Shamma. Font Smoothing in Flash Player,
Mai 2007.
http://blogs.adobe.com/alshamma/2007/05/font_smo
oth_in_flash_player_1.html

6. Adobe Systems. Adobe Flex 3, June 2009.
http://www.adobe.com/products/flex/

7. Prof. Dr. Stefan Fischer. Verteilte Systeme. TU
Braunschweig, 2002 http://www.ibr.cs.tu-
bs.de/courses/ws0203/vs/PDF/VS-0203-Kap01-
Einfuehrung- c 1S.pdf

8. Cornel Creanga. Bringing data into Flex applications,
November 2008.
http://www.cornelcreanga.com/2008/11/

9. VMware Inc. VMware Fusion, 2009.
http://www.vmware.com/de/products/fusion/

10. Field of Experts for Image Based Rendering

http://nguyendangbinh.org/Proceedings/BMVC/2006
/papers/363.pdf

11. RFB Protocols

http://en.wikipedia.org/wiki/RFB_protocol

12. The RFB Protocols, Real VNC [Tristan Richardson]

http://www.realvnc.com/docs/rfbproto.pdf

www.ijraset.com Vol. 2 Issue VI, June 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 50

13. Image Comparisons in Java

http://manthapavankumar.wordpress.com/2012/11/25
/comparing-two-images-in-java/

http://sahits.ch/blog/?p=587

14. Separating Background and Foreground pixels in an
image

http://stackoverflow.com/questions/14423615/seperat
ing-background-and-foreground

Image Rendering on Windows

