

4 VII July 2016

www.ijraset.com Volume 4 Issue VII, July 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved
314

A Survey on Frequent Pattern Mining Methods
Akansha Pandey1, Shri Prakash Dwivedi2, H. L. Mandoria3

1,2,3Department of Information Technology, College of Technology, GBPUAT
Abstract- In this paper, the frequent pattern mining methods have been discussed that play very important role to generate
association rules. The aim of frequent pattern mining is to search repeatedly occurring relationships in a data set. A comparative
study between the algorithms from Apriori to more advanced Frequent Pattern growth approach and its variations have been
done in this paper. Haoyuan Li et al (2008) suggested that PFP (Parallel Frequent Pattern) algorithm is more efficient as it
parallelizes the FP (Frequent Pattern) growth approach. Again, Le Zhou et al (2010) proposed BPFP (Balanced Parallel FP)
where the load is balanced to make the algorithm more efficient. The frequent patterns discovered by these algorithms are useful
in other data mining applications such as classification, correlations and other relationships among data. The discovery of
interesting relationships among a large amount of records can help in decision making process. This paper examines the
frequent pattern algorithms, their enhancements, limitations and advantages.
Keywords: Frequent pattern mining, Apriori algorithm, Frequent Pattern growth, PFP, BPFP.

I. INTRODUCTION
A regular and intelligible form or sequence which can find out the difference easily in the manner in which something happens or is
done is known as pattern. And those patterns that appear repeatedly in a database are frequent patterns. Taking an example of a set
of items, such as oil and spices that appear very often together in a data set is a frequent itemset. And a subsequence, such as buying
first a mobile phone, then a memory card, and then its cover, if it occurs regularly in a shopping history, then it is a frequent pattern.
Frequent patterns are helpful in mining associations, correlations, data classification, clustering and many other interesting
relationships among data. Because of the continuous collection of massive amount of data many industries have become interested
in frequent pattern mining techniques. The discovery of interesting relationships among a large amount of records can help in
decision making process [7].
Frequent pattern mining concept was first proposed by Agrawal et al. for market basket analysis in 1993. Here, in this method
customers’ buying habits are analyzed by generating associations among the items placed by customers in their shopping baskets.
For example, if customers are buying oil, what is the possibility that they will buy spices also on the same trip to the market. This
information helps retailers to develop strategies, by gaining knowledge as to which items are most often bought together by the
customers, and increasing sales by doing selective marketing [4].
Taking an example, universe as the set of items available, then for denoting the presence or absence of each item, a Boolean variable
is given to that item. Then each basket can be represented by a Boolean vector of values assigned to these variables. The Boolean
vectors which are given to each item can be analyzed for buying patterns that represent items that are often purchased together.
These often occurring patterns then can be described in the form of association rules.
There are two measures of rule interestingness i.e. rule support and confidence. The support displays the usefulness of found rules
and confidence shows the certainty of discovered rules. If the rules satisfy both the thresholds minimum support and minimum
confidence which can be set by the users, they become interesting.
Since the first proposal of this frequent pattern mining task and its associated efficient mining algorithms, there have been many
publications, on various types of extensions and applications of pattern mining methodologies. Still research is needed to reduce the
size of derived pattern sets and enhance the quality of retained patterns.
The main objective of the paper is to understand the basic concepts of frequent pattern mining and the methods used for discovering
these frequent patterns. The discovery of such patterns helps to find the association among the itemsets of the query.
The rest of the paper is organized as follows. In section 2, literature review is presented. The section 3 gives apriori algorithm and
the work related to it. In section 4, frequent pattern growth algorithm and its extensions is described. Section 5, presents the
conclusion.

II. LITERATURE REVIEW
Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for mining frequent itemsets for Boolean association
rules [8]. It is the basic algorithm for finding frequent itemsets which is based on the fact that the algorithm uses prior knowledge of
frequent itemset properties [8]. The later variations of Apriori algorithm, partitioning technique was proposed by Savasere,

www.ijraset.com Volume 4 Issue VII, July 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved
315

Omiecinski, and Navathe in 1995 [1] to improve the algorithm’s efficiency. This new proposed algorithm reduced the I/O overhead
as well as the CPU overhead for most cases. The sampling approach is discussed by Toivonen in 1996 [3] for large databases. The
approach here is to pick a sample randomly and then finding all the association rules that probably present in the whole database
based on that sample and verifying the results with the rest of the database. A dynamic itemset counting approach is given by Brin,
Motwani, Ullman, and Tsur in 1997 [10]. The idea behind dynamic itemset algorithm is to find large itemsets with minimum passes
than the traditional algorithms and yet using fewer candidate itemsets than the methods based on sampling. Also the concept of item
reordering was introduced in this paper which improves the low-level efficiency of the algorithm.
Many frequent itemset mining methods have been proposed as alternatives to the Apriori-based approach. A pattern-growth
approach i.e. FP growth was proposed by Han, Pei, and Yin in 2000 [5] for mining frequent itemsets without candidate generation.
This frequent pattern tree structure is an extended prefix tree structure which is used for storing compressed, crucial information
about frequent patterns, and develop an efficient FP-tree based mining method, FP-growth, for mining the complete set of frequent
patterns by pattern fragment growth. Later to improve its efficiency the algorithm is parallelized on distributed machine. The
algorithm PFP (Parallel Frequent Pattern) growth is proposed in 2008 by Haoyuan Li et al. [2], where the partitioning applied
eliminates computational dependencies between machines and hence the communication between them. Again the parallelized
algorithm is improved by balancing the load and the algorithm is proposed as BPFP (Balanced Parallel FP) in 2010 by Le Zhou et
al. [6]. Because of the load balancing feature this improves parallelization and hence improves performance.

III. APRIORI ALGORITHM
Apriori algorithm was first proposed by R. Agrawal and R. Srikant for mining frequent itemsets for Boolean association rules in
1994 [8]. It is based on the concept that previous information of frequent itemset properties is used. It is an iterative approach, where
to find (m+1) itemsets, m-itemsets are used. First step is to find the set of frequent itemsets by scanning the database to have the
count for each item, and those items that have count more than minimum support threshold are selected, that is indicated by L1.
Next, this L1 is used to find L2, which is then used to find L3 and this process goes on, until no more frequent m-itemsets can be
found. The finding of each Lm requires one full scan of the database.
For reducing the space, Apriori property is used that states all the subsets of a frequent itemset that are nonempty must also be
frequent.
Apriori algorithm is a two-step process join and prune.

A. Join
To find a set of candidate m-itemsets(Lm) is created by joining Lm-1 with itself, represented by Cm. Let l1 and l2 be itemsets of Lm-1.
li[j] denotes to the jth item in Li. It is assumed in this algorithm that the items within an itemset are sorted in lexicographic order.
The join, Lm-1 join Lm-1, is executed, where members are joinable if first (m-2) items in both the sets are same.

B. Prune
Cm is a superset of Lm. A database scan is done to determine the count of each candidate in Cm would result in the determination of
Lm. Cm can be huge, and so this could involve heavy computation. To reduce the size of Cm, the Apriori property i.e. any (m-1)-
itemset that is not frequent cannot be a subset of a frequent m-itemset.

1) Variations of Apriori Algorithm
a) Hash-based technique: This technique is used to reduce the size of the candidate m-itemsets, Cm, for m > 1. For example, while

scanning each transaction in the database to generate the frequent1-itemsets, all the 2-itemsets can be created for each
transaction, then mapped into the different buckets of a hash table structure, and the bucket counts is increased accordingly. A
2-itemset with a bucket count that does not satisfy the support threshold cannot be frequent and removed from the candidate set
[9]. Hence, the number of candidate itemsets can be decreased.

b) Transaction reduction: A transaction that does not contain any frequent m-itemsets cannot contain any frequent (m+1)-itemsets
according to apriori property. Hence, such a transaction can be removed from further consideration because subsequent
database scans for j-itemsets will not need to consider such a transaction.

c) Partitioning: It involves only two database scans to mine the frequent itemsets [1]. It consists of two phases, in the first phase
the transactions are divided into m non-overlapping partitions. If the minimum support threshold is represented by min sup,
then for a partition the minimum support count is min sup * the number of transactions in that partition. Any itemset that is

www.ijraset.com Volume 4 Issue VII, July 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved
316

possibly frequent in the database then that must occur in at least one of the partitions as a frequent itemset. In the second phase,
a second scan of database is conducted in which the actual support of each candidate is assessed to determine the global
frequent item sets.

d) Sampling: Here, in this approach for searching frequent itemsets instead of the whole database the concept is to pick a random
sample of the given data and then search is performed in that sample [3]. Because the searching for frequent itemsets is
performed in a sample, it is possible that some of the frequent itemsets are missed. To reduce this problem the support threshold
lower than minimum support is used to find the frequent itemsets in the sample. The remaining database is then used to
compute the actual frequencies of each itemset in the frequent itemset evaluated for the sample.

e) Dynamic itemset counting: Here the database is divided into several blocks which are marked by the start points [10]. The main
concept is to add new candidate itemsets at any start point which checks new candidate itemsets only immediately before each
complete scan of the database. The lower bound of the actual count for this technique set as the count-so-far. If the count-so-far
of the itemset exceeds the minimum support threshold, then the itemset is considered the frequent itemset.

2) Limitations of Apriori Algorithm
a) After this much improvement in the algorithm it still generates a large number of candidate sets.
b) And the need of scanning whole database and checking of large set of candidates repeatedly is not reduced.

IV. FREQUENT PATTERN GROWTH

This approach is based on divide-and-conquer strategy. The first step is to compress the whole database into a frequent pattern tree
that preserves the association information of itemsets. The next step is to divide this compressed database into a set of conditional
databases, where each conditional database is associated with one frequent item and also these databases are mined separately.
Because for each frequent item its associated data sets are needed to be examined only. This approach is beneficial as it reduces the
size of the data sets to be searched [5].
One of the advantages of FP-growth method is that the problem of finding long frequent patterns is changed into searching for
shorter ones because of small conditional databases repeatedly and then concatenating the suffix. For good selection and less search
costs, the least frequent items are used as a suffix.
When the database is large, the alternative of memory based FP tree is to first divide the database into a set of small databases, and
then an FP-tree is constructed and mined in these small databases separately. This process can be applied repeatedly to any of the
small database if its FP-tree is still not fit in the main memory.

A. Variations of FP growth
1) Parallel FP growth: Parallel FP growth was introduced to overcome the limitations of FP growth. In FP growth for a large

scale database, support threshold need to be set large enough, or the FP-tree would overflow the storage. For Web mining tasks,
the support threshold is set to be very low to obtain long-tail itemsets. This setting may require unacceptable computational
time. While in parallel FP growth approach, all the steps of FP growth can be parallelized leading to decrease in computational
time [2].The PFP approach has five steps:

a) Sharding: The database is divided into successive parts and stored on different computers. This distribution and division of data
is called sharding.

b) Parallel Counting: This step is to count the support values of all the items that appear in database. The input is one shard of
database. In this step, the result of discovered items is stored in F-list.

c) Grouping Items: Here, in this step all the items on F-List are divided into Q groups, where a unique group id (gid) is given to
each group. As both the lists are small and the time complexity is linear, hence this step does not take much time for
computation.

d) Parallel FP-Growth: This step performs the following two functions:
i) Generating group-dependent transactions: The input is given a shard of database which is generated in the sharding step.

Before any transactions in the shard, it first reads the G-list. And then, it outputs key-value pairs, where the key is a group-id
and the value is a group-dependent transaction.

ii) FP-Growth on group-dependent shards: When all group dependent transactions are generated, for each group-id, then this step
is performed where a local FP-tree is built and growth its conditional FP-trees recursively for each shards. During this recursive

www.ijraset.com Volume 4 Issue VII, July 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved
317

process, the discovered patterns can be generated as output.
iii) Aggregating: In this step, the output generated in the previous step is aggregated and final results are generated.

2) Balanced Parallel FP growth: There are two differences as compared with PFP. First is that the grouping step has a balanced

strategy, where the entire mining task is divided into even subtasks to improve the parallelization [6]. And second is that BPFP
doesn't involve the Aggregating step [6], as its aim is to discover all the frequent itemsets.

The BPFP approach involves the following steps:

a) Sharding: The whole database is first divided into successive parts and stored on different computers.
b) Parallel Counting: The input of this step is one shard of the database and the output is the F-list which contains the list of

frequent items sorted in descending order, with respect to the frequency.
c) Balanced Grouping: This step is different from PFP as, all the items of F-list are fairly divided into Q groups by balancing the

load among the groups. This step is divided into following two steps:
i) Mining Load Estimation: For computing load of each item some estimation is needed. First, load of FP-Growth on conditional

pattern base is estimated by number of recursive iterations during FP-Growth execution on conditional pattern base of each
item. The second is to estimate the location of each item in F-List by the length of the longest frequent path in the conditional
pattern base. The estimated load of item i (Ti), can be computed by location of item i in F-List (Li), as follows:

Ti = log Li

ii) Balanced Partition: By the load computed in previous step all the items are sorted in descending order forming L-List. Then,
the items are arranged in one item per group as the front-most Q items from the initial Q groups. Load of each group is
initialized with load of the item it contains. Then the following steps are repeated until all items in the L-List are grouped:

The next non-grouped item is added to the group with the minimum load in L-List.
The load of that group is increased by load of the new item.
Parallel FP Growth: The following two steps are performed:
Generating group-dependent transactions: The following two operations are performed for each Ti:
For each group which contains item in Ti, locate its right-most item in Ti, say L.
Output one key-value pair <key' = group-id, value = {Ti[1], Ti[2], ... , Ti[L-1], Ti[L]}>.

FP-Growth on group-dependent transactions: In this step, the input is provided in the form of <key' = group-id, value' = DB (group-
id)> one by one, where each DB (group-id) are all transactions of the same group. For each DB (group-id), the FP-Tree is
constructed and mined recursively. The only difference from traditional FP-Growth is that only items in group group-id are
traversed in the first FP-Growth execution.

V. CONCLUSION
In this article, a brief overview of the frequent pattern mining methods that are apriori and frequent pattern growth and their
variations is presented. To compress the original transaction database Frequent Pattern growth approach constructs a highly compact
data structure, rather than employing the generate-and-test strategy of Apriori-like methods. It is analysed that the frequent pattern
growth approach is more efficient than apriori. And the parallelized FP growth takes less computational time as compared to the
traditional approach. The new balanced parallel approach further improves the performance by balancing the load of the parallel FP
growth. After reviewing the papers on frequent pattern mining it is felt that the bottleneck of frequent pattern mining depends on
whether compact and high quality set of patterns can be derived that are most useful in applications. Still research is needed to
reduce the size of derived pattern sets and enhance the quality of retained patterns.

S. no.

Algorithm

Features

Advantages

Limitations

1

Apriori

i. Based on prior knowledge of
data.
ii. Uses bottom-up generation
approach for frequent itemsets
combinations.

i. The main advantage is that
k items candidate itemsets
can be generated by joining
large itemsets having k-1
items, and removing those

i. It is very much costly to
handle a large number of
candidate sets. For example, if
there are 104 frequent 1-
itemsets, the Apriori algorithm

www.ijraset.com Volume 4 Issue VII, July 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved
318

iii. Assumption taken in this
algorithm is that the itemsets
are stored in lexicographic
order.
iv. All nonempty subsets of a
frequent itemset must also be
frequent.

that contain any subset that
is not large which implies
that the itemsets are not
frequent in that subset. This
results in the generation of
less number of candidate
sets.

will need to generate more than
106 length-2 candidates and
accumulate and test their
occurrence frequencies.
ii. It is tedious to scan the
database recursively and check a
huge set of candidates by pattern
matching.

2

Hash based
technique

i. The itemsets are hashed in
the corresponding buckets.

i. The number of itemsets
decreased as compared to
the Apriori algorithm.
ii. Less execution time in
comparison with Apriori.

i. Slightly higher cost in the first
iteration due to the generation of
hash table.

3

Transaction
reduction

i. Depends on the transactions
instead of the itemsets.

i. Reduces the number of
transactions to be scanned in
the future iterations.

i. Does not consider the itemsets
as the priority.

4

Partitioning

i. Partitions database to find
candidate itemsets which are
the local frequent itemsets in
the partitions.
ii. The local frequent itemsets
then combined to form
candidate itemsets and getting
the output of global itemsets.

i. Reduction in I/O overhead
as well as in CPU overhead
in comparison with previous
algorithms.

i. Partition size and the number
of partitions can’t be taken
large. The size to be considered
so that each partition can fit into
main memory and therefore be
read only once in each phase.

5

Sampling

i. Mining on a random set of
data in place of the given data.

i. Beneficial when the
efficiency is of much
importance.

i. Possibility is that some of the
global frequent itemsets can be
missed.
ii. Accuracy might not be met
due to the consideration of
sample instead of the whole
database.

6

Dynamic itemset

Counting

i. Candidate itemsets can be
added at different points
during a scan.

i. Fewer database scans
when compared to the
traditional approaches for
finding all the frequent
itemsets.
ii. Item reordering concept
is added that improves the
low level efficiency of the
algorithm.

i. Candidate set generation is
still costly, especially when
there exists long patterns.

7

Frequent Pattern

i. Tree structure for storing

i. Avoids costly, repeated

i. When the database is large, it

www.ijraset.com Volume 4 Issue VII, July 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved
319

Table 1. Comparison between the frequent itemset mining algorithms

REFERENCES
[1] Savasere, E. Omiecinski, and S. Navathe (1995). “An efficient algorithm for mining association rules in large databases”. In Proc. 1995 Int. Conf. Very Large

Data Bases, pp. 432–443.
[2] Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, Edward Chang (2008). “PFP: Parallel FP-Growth for Query Recommendation”. In Proc. of the 7th Pacific-

Asia conference on Advances in knowledge discovery and data mining, IEEE, pp. 467-473.
[3] H. Toivonen (1996). “Sampling large databases for association rules”. In Proc. 1996 Int. Conf. Very Large Data Bases, pp. 134–145.
[4] Jiawei Han, Hong Cheng, Dong Xin, Xifeng Yan (2007). “Frequent pattern mining: current status and future directions”. Data Mining and Knowledge

Discovery, pp. 55-86.
[5] J. Han, J. Pei, and Y. Yin (2000). “Mining frequent patterns without candidate generation”. In Proc. 2000 ACM-SIGMOD Int. Conf. Management of Data, pp.

1–12.
[6] Le Zhou, Zhiyong Zhong, Jin Chang, Junjie Li, Huang, J.Z., Shengzhong Feng (2010). “Balanced parallel FP-Growth with MapReduce”. Information

Computing and Telecommunications, 2010 IEEE Youth Conference, pp. 243-246.
[7] Ramya. S. Bhat, A. Rafega Beham (2016). “Comparative Study on Algorithms of Frequent Itemset Mining”. International Journal of Computer Science and

Mobile Computing, 5, pp. 271-275.
[8] R. Agrawal and R. Srikant (1994). “Fast algorithms for mining association rules”. In Proc. 1994 Int. Conf. Very Large Data Bases, pp. 487–499.
[9] R. Agrawal, M. Mehta, J. Shafer, R. Srikant, A. Arning, and T. Bollinger (1996). “The Quest data mining system”. In Proc. 1996 Int. Conf. Data Mining and

Knowledge Discovery, pp. 244–249.
[10] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur(1997). “Dynamic itemset counting and implication rules for market basket analysis”. In Proc. 1997 ACM-

SIGMOD Int. Conf. Management of Data, pp. 255–264.

Growth compressed, crucial
information about frequent
patterns.

database scans.
ii. Avoids the costly
generation of a large number
of candidate sets.

is sometimes unrealistic to
construct a main memory based
FP-tree.

8

Parallel Frequent

Pattern

i. Parallelizes the FP-Growth
algorithm on distributed
machines.

i. Partitioning applied in this
algorithm eliminates
computational dependencies
between machines and
hence the communication
between them.
ii. Computational time is
linear.

i. PFP doesn’t take into
consideration load balance
which is quite important for
large scale data processing.

9

Balanced Parallel
Frequent Pattern

i. BPFP adds into PFP load
balance feature.

i. Because of the load
balancing feature this
improves parallelization and
hence improves
performance.

i. The precision for balanced
grouping strategy is not taken
into consideration.

