

4 VII July 2016

www.ijraset.com Volume 4 Issue VII, July 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved

460

A Study On Near Data Processing
Rucha Shankar Jamale

 Department of Computer Engineering,
Bharati Vidyapeeth Deemed Universiy, Pune, India.

Abstract-This paper helps to understand the basics of Near Data Processing. Systems accessing big data need huge memory
storage which results in quality less performance and high cost hence the term Near Data Processing emerged. In NDP
computations are done within the same memory block where the respective data resides which helps to reduce execution time,
memory consumption, leading to a seamless performance.
Keywords- Big Data, Active Storage, Near Data Processing, Disk Performance, FPGA, SCSI, Memory Model, Database
Models.

I. INTRODUCTION
Systems which execute big data workloads usually move large data volumes from storage and memory for performing a reserved
quantity of computation on each element of data. Data movement consumes high cost which results in limited performance and
efficiency. To overcome this bottleneck and control the high bandwidths in memory and storage devices, a new idea evolved which
includes computing near the data.
NDP minimizes the movement of data by computing at a suitable location in memory hierarchy; it considers the location and the
information which is required to extract from the data. Hence computation is done exactly in data's residence, which is in main
memory, cache or in persistent storage. This movement of data is done traditionally in CPU where it initially resides.NDP examples
can be seen in existing systems in which computations are held near to the disk. Data streams are preprocessed into the disks such
that minimum number of datasets can be shifted to the other parts of the system for processing.

II. LITERATURE REVIEW

A. Near-Data Processing
A Near data processing is an approach in which reducing movement of data that can be accomplished by shifting the computation
near and more close to the data. It is referred by locating memory close to the data by creating a specialized hardware which
supports small set of capabilities for computation; this idea was already proposed decades ago in various forms.
NDP hardware is not seen widely in terms of commercial products. NDP was originally proposed by the help of scaling Dennard
and Moore's Law which included high and steady gain in performance of CPU. Due to withdrawing outcomes of scaling in
technology renaissance in NDP research is possible.
In earlier days NDP systems have been focusing only on universal purpose computation. In recent years efforts were taken to
understand the improvement opportunities in performance and power. Specialized NDP hardware accelerators provide these
improvement opportunities. And these accelerators are derived from a finite set of attributes; hence it can remove many overhead
resources related with general processing.
Conceptually, Keeping resources near to the data where they are located and reorganizing the applications in a distributed
computing infrastructure; is the very principle which is applied at different steps at memory hierarchy and storage hierarchy.

B. Near-Data Computation
Moving the computation towards the main processor of the system and the processors embedded in SSD's (Solid State Drive)
devices can produce large enhancement s relating bandwidth for data centric calculations. But the calculation latent goes afar which
includes saving the power by avoiding the data movement across Serial Advanced Technology Attachment (SATA) or Peripheral
Component Interconnect (PCI) Express. SSD's processors are more efficient than those in host, relating of energy per process. SSD
code runs in a free execution environment hence it is trustworthy and can be acceptable easily. The accessed data's latency within
SSD is less comparatively from the host.
Improvement in Latency benefits high performance, but influencing the advantages leads in efficiency of energy gain and declined
latency in terms of difficult operations, which requires dependent data access (for e.g. atomicity guarantees and enforcing ordering).
The software which implements these types of specific application semantics makes unpretentious computational command, but

www.ijraset.com Volume 4 Issue VII, July 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved

461

moving this in the storage devices may lead to uneven impact on system's performance.
A newly proposed atomic, multipart, write mechanism decreases latency in terms of operational updates by 65% and mostly
diminishes overheads in bandwidth which are incurred by logging schemes. Likely implementing some portions in an SSD for a
finite key value stored in the processor may increase throughput by 7.5-9.6 times. Further gains could be provided by leveraging
execution. A newly proposed storage line which allows bypassing operating system for storage attributes which do not change
metadata of the file system could give good performance when file system can allot updates for easy metadata for the running
software in an SSD. For discovering the prospective of specific application implementation in a storage system, it is also possible to
implement a prototype in SSD which accepts programmability as the important idea in an interface of storage.
SSD applications are downloaded by various different applications for adding original features and modifying device behavior. SSD
semantics helps to exploit all the NDP advantages. The newly derived SSD functionality works in a seamless manner with host side
application when flexible programmability is provided within SSD.
It is comparatively easy to transfer legacy program portions to SSD with minimum efforts. In an SSD application information
related to data structure and file systems is embedded so that metadata updates can be take captured by the SSD. The possibility of
errors is reduced since similar data structures and algorithms are used by SSD application as original code at host side, and this
results good performance leading less traffic I/O and simpler host side code to the SSD.

C. NDP Communication & Memory Model
 The standard NDP systems are analogous to primary NDP designs that target plain workloads, such as parallel map phase in
MapReduce. Many live applications, such as deep learning and graph processing, it needs more complex communication between
thousands of threads. It will lead to performance bottleneck and energy wastage during moving of data between memory stacks and
host processors when relayed completely on host processors for managing all the communications. Additionally, the number of
NDP cores will develop along with memory capacity in a particular time. To completely utilize the execution and memory
parallelism, we need an NDP architecture which supports efficient communication among thousands of threads. For direct
communication in NDP cores, we support direct communication within NDP cores and across the stacks because it simplifies the
implementation of communication patterns in memory analytics workloads.
The physical interconnection in each stack consists of a 2D mesh network-on-chip (NoC) on the logic die which allows cores related
with each vault for direct communication with another vault within the same stack. Sharing a single router at each vault is effective
area wise and adequate in terms of throughput. The 2D mesh provides access to the external serial links that helps to connect stacks
with each other and to the host processor. This interconnection is allowed by all the cores in the system, by NDP and the host, to
handle all the memory stacks through an integrated physical address space. NDP core sends read/write access straightly to its local
vault controller. Virtual memory helps to assure Data coherence. Remote accesses are more expensive with respect to latency and
energy. Though, analytics workload operates mainly on local data and communicates at easily understood points. By carefully
optimizing the work assignment and data partitioning, NDP cores mostly accesses memory locations in their very own local vaults.

D. NDP in Database Systems
With a raising database applications storing all or recent data in huge main memory systems, memory wall leads to initial
bottleneck. Various operators in database, like aggregation, selection, and projection, generate nearly same output as that of input
with slight change, forming them agreeable for data movement optimization. Executing the above-mentioned operators directly
within a memory and transporting only the required data (i.e., columns, tuples, and aggregates) by the subsystem of memory sets
CPU liberated to perform different tasks, decrease pollution of cache, and improves bus pressure of memory. Alternatively, an NDP
operator who generates bigger results compares to input, such as joins, which cannot assure improvement in performance for all
time.
Operator select have progressed majorly in the latest years by applying techniques like working in vectorization, multicores, and
data compressed; which helps only on memory bound. Adversely, for select operators NDP solution designing allow avoiding
changing the data entirely. It is exciting that the NDP capability to shrink the whole data quantity passed towards the CPU by the
help of hierarchy of memory equivalents the advantages gained by storage in columnar. Selected NDP can additionally change the
data by moving up the related tuples of columns related, while storage in columnar requires entire related columns which are
proliferated through the memory hierarchy.

www.ijraset.com Volume 4 Issue VII, July 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved

462

E. NDP Features
1) Technology- Following two reasons make NDP a stronger case; without the help of earlier disadvantages of merged logic

memory fabrication 3D and 2.5D technologies enabled the combination of computing and data stores; at a low energy overhead
higher bandwidth is enabled by data and close immediacy of computation.

2) Balance- Tight coupling in every NDP element results in eliminating the computation to data bottleneck, but this can lead
communication bottleneck between NDP elements. Fortunately, this can be recovered with new technologies like die-stacking
and system-on-chip (SoC) technologies which enable integration of network-on-chip, which is a capable network stack of
software and potentially leading openings for customized NDP interconnect designs.

3) Capacity- Including NVM in NDP result larger capacity in devices and usually lower cost. The benefit of gaining high capacity
per element in NDP is the diminution in system for a fixed storage size of dataset. It is a merit because systems having small
size leads low rate of failure and decrease obstacle in parallelization software. Earlier designs in NDP were limited due to
capacity of small devices which included inter-device data movement and fine-grained parallelism.

4) Necessity- NDP is a promising alternative due to its high efficiency and improving overheads in centric architectures. It mainly
involves following basics: Cache hierarchy overhead and data movement are reduced when computation is moved close
towards the data; bandwidth, data capacity and locality are been matched while computing, which needs enabling of memory to
computing ratio; and further improved efficiency by specialized computation for data transformation.

5) Secure workloads- A feasible secure market is vital for new technology implementations. Ideal market for establishing NDP is
presented by Co-designed big-data appliances. Indeed, Oracle's Exadata and IBM's Netezza are old marketing NDP products.

6) Heterogeneity- the NDP involves heterogeneity in terms of flexible supports workloads at ample range. This could lead to a
hurdle, but current improvements for managing heterogeneity (as FPGA/SoC, big. LITTLE, GPU/APU) and in programming
are already clearing the path towards NDP adoption.

7) Ecosystem- Training, prototypes, and tools are vital elements for NDP implementation by non skilled programmers. Software
programming prototypes such as MapReduce, Open MP4.0, and Open CL with their hardware model with the companies like
Samsung, Micron, Vinray, and Micron provide basic knowledgw for developing the NDP applications.

8) Interface- Memory and host are the attributes needed by the NDP, which is literally impossible considering today's standard of
DDRx. The importance of server and memory interfaces based on desktop is going to change following two trends: server and
desktop DRAM which is replaced rapidly by mobile DRAM as latest memory service, and proliferation of recent memory
interfaces like LPDDRx, HBM, DDR4, HMC, and Wide I/O. Moreover, interfaces like preliminary HMC includes support of
NDP such as host device decoupling and smart refresh. More protocols in NDP can be developed by utilizing the above novel
services.

9) Software- Map Reduce, a distributed software framework have admired the idea of putting computation close towards the data
and eased the curve of learning of NDP hardware Programming. This type of framework even handles hard NDP software
issues like naming, scheduling, data layout, and tolerating the fault.

10) Hierarchy- NVM i.e. new nonvolatile memory which integrates memory performance with storage capacity enables an even
memory hierarchy and storage hierarchy and self-composed NDP computing elements. Particularly this hierarchy diminishes
bottleneck resulting NDP data on and off the main memory.

F. Present Work
Recent companies working and producing in NDP applications are Vinray Technology, Netezza, Micron, Convey Computer, EMU
Technology (the Automata Processor and Hybrid Memory Cube), Adapteva, DSSD, and Oracle.

III. SYSTEM CHALLENGES
The NDP systems make use of coarse-grained address interleaving rather than fine-grained address interleaving. To understand the
impact of this alteration, we run the SPEC CPU2006 benchmarks on the Conv-3D system with fine-grained and coarse-grained
interleaving. All processing is done itself on the host processor cores. For the benchmark that caches practically well in the host
LLC (perlbench, gcc, etc.), the impact is significantly negligible. Among the rigorous memory benchmarks (libquantum, mcf, etc.),
coarse-grained interleaving leads an average slowdown of 10 %(20.7% maximum for GemsFDTD). In general, this performance
loss is not minor but it is not massive either. Hence, we it is worth to use coarse-grained interleaving to gain large benefits from
NDP for in-memory analytics, even if some host-side code undergoes small degradation. Nevertheless, adaptive interleaving

www.ijraset.com Volume 4 Issue VII, July 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved

463

schemes would be studied further in future work.
IV. CONCLUSION

By placing data close to the memory, we reduce the energy waste for data movement in workloads having limited temporal locality.
For better understanding we learned near data computation, near data communication, near data in databases and near data module.

REFERENCES
[1] Raval, K.S., Suryawanshi, R.S., Naveenkumar, J. and Thakore, D.M., 2011. The Anatomy of a Small-Scale Document Search Engine Tool: Incorporating a

new Ranking Algorithm. International Journal of Engineering Science and Technology, 1(3), pp.5802-5808.
[2] Archana, R.C., Naveenkumar, J. and Patil, S.H., 2011. Iris Image Pre-Processing And Minutiae Points Extraction. International Journal of Computer Science

and Information Security, 9(6), p.171.
[3] Jayakumar, M.N., Zaeimfar, M.F., Joshi, M.M. and Joshi, S.D., 2014. INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY

(IJCET). Journal Impact Factor, 5(1), pp.46-51.
[4] Naveenkumar, J. and Joshi, S.D., 2015. Evaluation of Active Storage System Realized through MobilityRPC.
[5] Jayakumar, D.T. and Naveenkumar, R., 2012. SDjoshi,“. International Journal of Advanced Research in Computer Science and Software Engineering,” Int.

J, 2(9), pp.62-70.
[6] Jayakumar, N., Singh, S., Patil, S.H. and Joshi, S.D., Evaluation Parameters of Infrastructure Resources Required for Integrating Parallel Computing Algorithm

and Distributed File System.
[7] Jayakumar, N., Bhardwaj, T., Pant, K., Joshi, S.D. and Patil, S.H., A Holistic Approach for Performance Analysis of Embedded Storage Array.
[8] Naveenkumar, J., Makwana, R., Joshi, S.D. and Thakore, D.M., 2015. OFFLOADING COMPRESSION AND DECOMPRESSION LOGIC CLOSER TO

VIDEO FILES USING REMOTE PROCEDURE CALL. Journal Impact Factor, 6(3), pp.37-45.
[9] Naveenkumar, J., Makwana, R., Joshi, S.D. and Thakore, D.M., 2015. Performance Impact Analysis of Application Implemented on Active Storage

Framework. International Journal, 5(2).
[10] Salunkhe, R., Kadam, A.D., Jayakumar, N. and Thakore, D., In Search of a Scalable File System State-of-the-art File Systems Review and Map view of new

Scalable File system.
[11] Salunkhe, R., Kadam, A.D., Jayakumar, N. and Joshi, S., Luster A Scalable Architecture File System: A Research Implementation on Active Storage Array

Framework with Luster file System.
[12] Jayakumar, N., Reducts and Discretization Concepts, tools for Predicting Student’s Performance.
[13] Jayakumar, M.N., Zaeimfar, M.F., Joshi, M.M. and Joshi, S.D., 2014. INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY

(IJCET). Journal Impact Factor, 5(1), pp.46-51.
[14] Kumar, N., Angral, S. and Sharma, R., 2014. Integrating Intrusion Detection System with Network Monitoring. International Journal of Scientific and Research

Publications, 4, pp.1-4.
[15] Namdeo, J. and Jayakumar, N., 2014. Predicting Students Performance Using Data Mining Technique with Rough Set Theory Concepts. International

Journal, 2(2).
[16] Naveenkumar, J., Keyword Extraction through Applying Rules of Association and Threshold Values. International Journal of Advanced Research in Computer

and Communication Engineering (IJARCCE), ISSN, pp.2278-1021.
[17] Kakamanshadi, G., Naveenkumar, J. and Patil, S.H., 2011. A Method to Find Shortest Reliable Path by Hardware Testing and Software

Implementation. International Journal of Engineering Science and Technology (IJEST), ISSN, pp.0975-5462.
[18] Naveenkumar, J. and Raval, K.S., Clouds Explained Using Use-Case Scenarios.
[19] Naveenkumar J, S.D.J., 2015. Evaluation of Active Storage System Realized Through Hadoop. International Journal of Computer Science and Mobile

Computing, 4(12), pp.67–73.
[20] RishikeshSalunkhe, N.J., 2016. Query Bound Application Offloading: Approach Towards Increase Performance of Big Data Computing. Journal of Emerging

Technologies and Innovative Research, 3(6), pp.188–191.
[21] Sagar S lad s d joshi, N.J., 2015. Comparison study on Hadoop’s HDFS with Lustre File System. International Journal of Scientific Engineering and Applied

Science, 1(8), pp.491–494.
[22] Salunkhe, R. et al., 2015. In Search of a Scalable File System State-of-the-art File Systems Review and Map view of new Scalable File system. In nternational

Conference on electrical, Electronics, and Optimization Techni ques (ICEEOT) - 2016. pp. 1–8.
[23] BVDUCOE, B.B., 2011. Iris Image Pre-Processing and Minutiae Points Extraction. International Journal of Computer Science & Information Security.
[24] P. D. S. D. J. Naveenkumar J, “Evaluation of Active Storage System Realized through MobilityRPC,” Int. J. Innov. Res. Comput. Commun. Eng., vol. 3, no.

11, pp. 11329–11335, 2015
[25] N. Jayakumar, S. Singh, S. H. Patil, and S. D. Joshi, “Evaluation Parameters of Infrastructure Resources Required for Integrating Parallel Computing Algorithm

and Distributed File System,” IJSTE, vol. 1, no. 12, pp. 251–254, 2015.
[26] N. Jayakumar, T. Bhardwaj, K. Pant, S. D. Joshi, and S. H. Patil, “A Holistic Approach for Performance Analysis of Embedded Storage Array,” Int. J. Sci.

Technol. Eng., vol. 1, no. 12, pp. 247–250, 2015.
[27] J. Naveenkumar, R. Makwana, S. D. Joshi, and D. M. Thakore, “Performance Impact Analysis of Application Implemented on Active Storage Framework,” Int.

J., vol. 5, no. 2, 2015.
[28] N. Jayakumar, “Reducts and Discretization Concepts, tools for Predicting Student’s Performance,” Int. J. Eng. Sci. Innov. Technol., vol. 3, no. 2, pp. 7–15,

2014.
[29] J. Namdeo and N. Jayakumar, “Predicting Students Performance Using Data Mining Technique with Rough Set Theory Concepts,” Int. J. Adv. Res. Comput.

Sci. Manag. Stud., vol. 2, no. 2, 2014.
[30] R. Salunkhe, A. D. Kadam, N. Jayakumar, and S. Joshi, “Luster A Scalable Architecture File System: A Research Implementation on Active Storage Array

www.ijraset.com Volume 4 Issue VII, July 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved

464

Framework with Luster file System.,” in ICEEOT, 2015.
[31] Balasubramonian, R., Chang, J., Manning, T., Moreno, J.H., Murphy, R., Nair, R. and Swanson, S., 2014. Near-data processing: Insights from a MICRO-46

workshop. IEEE Micro, 34(4), pp.36-42.

