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I. INTRODUCTION

Abstract neutral differential equations arise in many 
areas of applied mathematics. As such, they have been 
largely studied during the last few decades. The literature
related to ordinary neutral differential equations is very 
extensive. The work in partial neutral functional differential 
equations with infinite delay was initiated by Hernandez 
and Henriquez. First-order partial neutral functional 
differential equations have been studied by different 
authors. The reader can consult Adimy [1], Hale [13, 14] 
and Wu [25] for systems with finite delay and Hernandez 
Henriquez [17, 18] and Hernandez [16] for the unbounded 
delay case. Hernandez [15] established the existence results 
for partial neutral functional differential equations with 
nonlocal conditions modeled as

MMUi7(6) +�(6,7U)j= �7(6) +�(6,7U),0 ≤ 6≤ $7C= @+3(7UZ ,7U[ ,7U\ , … 7Û) ∈ Ω

Bahuguna and Agarwal [2] studied the approximation of 
solution to a partial neutral functional differential equation
with nonlocal history condition**6(7(6) +,(6,7(6−?D)) +�7(6) = +(6,7(6),7(6−?E)),6> 0,ℎ(7) = @,21[−?, 0]
in a separable Hilbert space, where ?= max{?1-?2}, ?1,?2>0. An extensive theory for ordinary neutral functional 
differential equations which includes qualitative behavior of 
classes of such equations and applications to biological and 
engineering processes. Several authors have studied the 
existence of solutions of neutral functional differential 
equations in Banach space [2, 3, 4, 6, 11, 12, 13, 15, 17, 18, 
23]. The nonlocal Cauchy problem for semi linear evolution 
equations in Banach space was studied first by Byszekswi [7, 
8, 9] where he established the existence and uniqueness of 
mild and classical solutions. The nonlocal conditions were 
motivated by physical problems and their importance is 
discussed in [?, ?, ?]. Balachandran et al [2, 4, 5, 21] studied 
the nonlocal Cauchy problem for various type of nonlinear 
integrodifferntial equations. In addition, our result can also be 
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regarded as an extension of the corresponding results on 
classical problem in [10, 21].

In this paper, we study the following neutral functional 
integrodifferential equation with nonlocal condition**6s9(6) +�i6,9(6),9()D(6),… 9()Q(6))jt+�(6)9(6)= �s6,9(6),9i(D(6)j,… . . ,9i(P(6)jt+ (6,9(6),�/i6,5,9(5)j*5,�Bi6,5,9(5)j*5) ,KCUC

t [0, T]9(0) + ,(9) = 9C (1.1)

II. PRELIMINARIES

Let -A be the infinitesimal generator of a compact analytic 
semi group of uniformly bounded linear operators U(t, s)
defined in the Banach space X. Let 0 ∈ >(�), then define the fractional power �X, for 0 ≤ :≤ 1,
as a closed linear operator on its domain �(�X(6)) which is 
dense in X. Further D(A(t)) is a Banach space under the norm��9��X= ���X9�,9∈ �(��X(6))
which we denote by 'X. Then for each 0 ≤ :≤ 1, 'X→ 'Y
for 0 < ;< :≤ 1 and the imbedding is compact whenever 
the resolvent operator of A is compact. We assume that

(a) there is a M≥1 such that �%��(6,5)�≤ ", for all 0 ≤ 6≤(.
(b) for any a > 0, there exists a positive constant �Xsuch that

��X��%(6,5)�≤ �X6X, 0 < 6≤ $.
Now we represent the basic assumptions on equation (1.1).

(H1) F : [0, T]×X(n+1)→ X is a continuous function, F(0, T]×
X(n+1) ⊂ D(A(t)) with n a positive integer, and there exists 
constants L, L1 > 0 such that the function A(t)F satisfies the 
Lipschitz condition:��(6)�(��5D,9C,9D, … . ,9Q) −�(6)�(5E,9C___,9D___, . . ,9Q___)�≤ !(�5D�−��5E�+ PLVNHC,D,…Q�9N−���9N�) (2.2)

for every 0 ≤ s1, s2≤T; xi, 9N∈ ', i = 0, 1,… n, and the 
inequality

��(6)�(6,9C,9D, … .��9Q)�≤ L1(0(9(��9N�∶ .=0,�1, … . ,1) + 1)� (2.3)

holds for any (t, x0, x1,….xn) ∈ [0, T] × Xn+1.

(H2) The function G : [0, T] × Xm+1 → X satisfies the following 
condition:

(i) for each t ∈ [0, T], the function G(t, .) : Xm+1 → X is 
continuous, and for each (x0, x1,….., xn) ∈ Xm+1, the function G(., 
x0, x1,…, xn) : [0; T] ∈ X is strongly measurable.

(ii) for each positive constant k ∈ N, there is a positive 
function gk ∈ L’([0, T]) such that

sup (��9C��,…… . .��9P�)�≤ /��(. ,9C�,9D, ……… . ,�9P)�≤ ,O(6, )
and

lim infO→F∞ 1/k,OK
R (5)*5= << ∞

(H3) The function K : [0, T] × X × X × X → X satisfies the 
following condition:

(i) For each t ∈ [0, T], the function K(.,.,.,.) : X × X × X → X
and for each x, y ∈ X, K(.,., x, y) : [0, T] → X is strongly 
measurable.

(ii) For each positive number r ∈ N, there is a positive 
function =r ∈ L'([0, T]) such that

sup��V�JS�z� (5,9(5),k /i5,?,9(?)j*?, kℎi5,?,9(?)j*?T
C

T
C z�≤=S(5)

and
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lim.1+I→F∞

14k=SK
R (5)*5=<D< ∞

(H4) ai, aj ∈ C([0, T]; [0, T]), i = 1, 2,…, m, j = 1, 2,…, n, g ∈
C(H;X) is completely continuous, where H = C([0, T];X), and 
there exists a constant L2 > 0 such that �,(��9)�≤ !E��9��for 
each x ∈ H.

Theorem 2.1 (Sadovskii’s fixed point theorem, [24]).
Let P be a condensing operator on a Banach space X, i,e.,

P is continuous and takes bounded sets into bounded sets, and :(P(B)) ≤ :(B) for every bounded set B of x with :(B) > 0. 
If P(H) ⊂ H for convex, closed and bounded set H of X, then P 
has a bounded point in H (where :(.) denotes the 
Kuratowski's measures of non-compactness).

III. EXISTENCE OF MILD SOLUTIONS

Definition 3.1: A continuous function x(.) : [0, T] → X is said 
to be a mild solution of the nonlocal Cauchy problem(1.1), is 
the function

%(6,5)�s5,9i)D(5)j,………… ,9i)Q(5)jt, 5∈ (0,6)
in integrable on [0, t) and the following integral equation is 
verified:9(6) = %(6, 0)u9C+�s0,9(0),9i)D(0)j,… . ,9i)Q(0)jt−,(9)v
−�s6,9i)D(6)j,…… . . ,9i)Q(6)jt+k%(6,5)�(5)�(5,9(5),9i)D(5)j,………… ,9()Q(5)) )*5U

C
+k%(6,5)�(5,9(5),9i(D(5)j,………… ,9((P(5)) )*5U

C + k%(6,5)[ (5,9(5),U
Ck /i5,?,9(?)j*?,kℎi5,?,9(?)j*?]*5U

C
U
C

Theorem 3.1: If the assumption (H1) − (H4) are satisfied and 
x0 ∈ X, then the nonlocal Cauchy problem (1.1) has a mild 
solution provided that

L0 : L[(M + 1)M0, MT] < 1
and  M0L1 + (L2 + <+ <1 +M0L1 + L1T)M < 1,

where M is from property (f), M0 =sup ��GD�(6)��.
Proof: For the sake of brevity, we rewrite (t, x(t),
x(b1(t)),…,x(bn(t))) = (t, v(t)) and (t, x(t), x(a1(t)),…, x(am(t))) 
= (t, u(t)). Define the operator P on C([0, T];X) by the formula

(#9)(6) = %(6, 0)g9C+�i0,8(0)j−,(9)h−�i6,8(6)j+k%(6,5)�(5)�(5,8(5))*5U
C

+k%(6,5)�(5,7(5))*5+U
C k%(6,5) (5,9(5),U

Ck /i5,?,9(?)j*?,kℎi5,?,9(?)j*?)*5,T
C

T
C 0 ≤ 6≤ $.

for each positive number k, let Bk = {x ∈ C([0, T];X) : �9�(t�)�≤ k, 0 ≤ t ≤ T}, then for each k, Bk is clearly a nonempty 
bounded closed convex set in X([0, T];X), since the following 
relation holds

��%(6,5)�(5)�(5,8(5))��≤ �%�(6,5)�����(5)�(5,8(5))��≤ "!D(/+ 1)
then from Bouchenr's theorem [20] it follows that U(t, s)
A(s)F(s, v(s)) is integrable on [0, t] since it is obviously 
strongly measurable, so P is well defined on Bk. We claim that 
there exists a positive number k such kthat P(Bk) ⊆ Bk. It is not 
true, then for each positive number k, there is a function xk(.) ∈ Bk, but Pxk ∉ Bk, that is

�#9O(6��)�> /
For some t(k) ∈ [0, T]. However, on the other hand, we have /< l#9O(6�)�= l%(6, 0)g9C+�i0,8(0)j−,(9O)h−��
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�i6,8O(6)j+k%(6,5)�(5)�i5,8O(5)j*�5�U
C +zk%(6,5)U

C ��i5,7O(5)j*5+ �%(6,5) (5,9O(5),�/(5,?9O(?))*?TCUC ,k ℎKC i5,?,9O(?)j�*?�*5≤�%(6, 0) [9C−,(9O) + �(0,8O(0))��]�+��(6)�GD(6)�(6,8O(6)�)��+k�%�(6,5�)����(5)�(5,8O(5)�)�*5U
Ck��%(6,5)�(5,7O(5))��U

C+ k z%(6,5��)�l (5,9O(5),k /i5,?,9U(?)j*?,T
C

U
Ck ℎi5,?,9O(?)j*?�)�K

C *5�≤"[��9C�+ !E/+ "C!D(/+ 1)] +"C!D(/+ 1)+"!D(/+ 1)$�
+"k ,O(5)*5+"k=S(5)*5.K

C
K
C

Dividing on both sides by k and taking the lower limit 
k→ +∞, we get

M0L1 + (L2 + M0L1 + L1T + <+ <D)M ≥ 1.

This is contradicts (7). Hence some positive k, P(Bk) ≤ Bk.

We will show that the operator P has a fixed point on Bk, 
which implies that equation (1.1) has a mild solution. To this 
end, we decompose P into P = P1 + P2, where the operator P1,
P2 are dfined on Bk respectively by(#D9)(6) = %(6, 0)�i0,8(0)j−�i6,8(6)j+k%(6,5)�(5)�i5,8(5)j*5U

C
and 

(#E9)(6) = %(6, 0)[9C−,(9)] +k%UC (6,5)�i5,7(5)j*5+ �%(6,5) [(5,9(5),�/(5,?,9(?))*?TCUC ,�ℎKC (5,?,9O(?))*?]ds
0 ≤ t ≤ T, and will verify that P1 is contraction which P2 is 
compact operator.

To prove P1 is a contraction, we take x1, x2 ∈ Bk, then for 
each t ∈ [0, T] and by condition (H1) and (6), we have

�(#D9D)(6)��(#E9E)(6)�≤ l%(6, 0)[�i0,8D(0)j−�i0,8E(0)j�]�+ ���i6,8D(6)j− �(6,8E(6)�)��+zk%UC (6,5)�(5)g�i5,8D(5)j− �i5,8E(5)jh*�5��
≤ ("+ 1)"C!�supCJUJK�9D�(5) −9E(5)m= !C�supCJUJK�9D�(5) −9E(5)m�(#D9D)(6) − (#E9E)(6)�≤ �LC�9D�(5) −9E(5)�,

which shows that P1 is contraction.
To prove that P2 is compact, firstly we prove that P2 is 

continuous on Bk, Let {xn}⊆ Bk with xn → x is Bk, then by (H2), 
we have �i5,7Q(5)j→ �i5,7(5)j,1→ ∞

 w6,9Q(6),k/i6,5,9Q(5)j*5,kℎKC
U
C i6,5,9Q(5)j*5x

→ w6,9(6),k/i6,5,9(5)j*5,kℎKC
U
C i6,5,9(5)j*5x

as n → ∞.Sincel�i5,7Q(5)j−�i5,7(5)jl≤ 2,O(5),
{� w6,9Q(6),k/i6,5,9Q(5)j*5,kℎKC

U
C i6,5,9Q(5)j*5x

− w6,9(6),k/i6,5,9(5)j*5,kℎKC
U
C i6,5,9(5)j*5x{�≤ 2=S(5),

then by nominated convergence theorem we have,��#E9Q�−#E9�= supCJUJK�%(6, 0)[9Q(0) −9(0)]+�k%(6,5)[U
C �i5,7Q(5)j−�i5,7(5)j]�*5�



www.ijraset.com Vol. 2 Issue VI, June 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 126

+ supCJUJK y�%(6, 5)UC [ s5,9Q(5),�/(5,TC ?,9Q(?)t*?,� ℎi5,?,9Q(?)j*?)*5KC − s5,9(5),� ℎKC i5,?,9(?)j*?t*5]y→ 0, as n→ ∞.
That is P2 is continuous.

We prove that the family {P2x : x ∈ Bk} is family of 
equicontinuous functions. To do this, let 0 ≤ t1 ≤ t2 ≤ T; 0 < A< t1, then�(#E�9)(6E) − (#E9)�(6D)�≤ �%(6E, 0) −%(6D��,0)���9(0)��+ k�%(6E,5) −%(6D��,5)�UG∈

C ���(5,7(5))��*5
+ k�%(6E,5) −%(6D��,5)�UZ
UZ]∈ ���(5,7(5))��*5

+ k�%(6E,5)�U[
UZ ���(5,7(5))��*5

+ k �%(6E,5) −%(6D��,5)�UZ]∈
Cz� (5,9(5),k /i5,?,9(?)j*?, k ℎi5,?,9(?)j*?K

C
T
C z�*5

+ k�%(6E,5)�UZ
UZ]∈z� (5,9(5),k /i5,?,9(?)j*?, k ℎi5,?,9(?)j*?K

C
T
C z�*5

+ k�%(6E,5)�U[
UZz� (5,9(5),k /i5,?,9(?)j*?, k ℎi5,?,9(?)j*?K

C
T
C z�*5

Noting that l�i5,7(5)jl≤ ,O(5) and gk(s) ∈ L’, we see 
that �(�P2x)(t2)−(P2x)(t1

�)�tends to zero independently of x ∈
Bk as t2 − t1 → 0 since the compactness of {U(t, s), t > s}
implies the continuity of {U(t, s), t > s} in t in the uniform 

operator topology uniformly for s. Hence P2 maps Bk into a 
family of equicontinuous functions.

It remains to prove that V (t) = {(P2x)(t) : x ∈ By} is 
relatively compact in X, V (0) is relatively compact in X. Let 0 
< t ≤ T be fixed, 0 < ∈ < t, for x ∈ Bk, we define

(#E, ∈V)(6) = %(6, 0)9(0) + k %(6,5)�(5,7(5))UG∈
C *5

+ k %(6,5)UZ]∈
C  (5,9(5),

k /i5,?,9(?)j*?, k ℎi5,?,9(?)j*?K
C

T
C )*5

= %(6, 0)9(0)+%(6,6−∈)k %(6−∈,6)�(5,7(5))UG∈
C *5

+%(6−∈,5) k %(6−∈,5)UZ]∈
C  (5,9(5),

k /i5,?,9(?)j*?, k ℎi5,?,9(?)j*?K
C

T
C )*5

Then from the compactness of U(t, s) (t − s>0), we obtain 
that &∈(t) = {(P2,∈V)(6): 9∈ �W}
is relatively compact in X for every, 0<∈< 6. Mortover, 9∈ �W, we have

�(#E9)(6) − (#E, ∈V)(6)�≤ k �%(6,5)�(5,7(5))�*5U
UG∈

+k �%(6,5)�z (5,9(5),k/i5,?,9(?)j*?,T
C �U

UG∈ k�ℎ(5,?,9(?)*?�K
C≤ "k ,O(5)*5+U

UG∈"k =S(5)*5U
UG∈
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Therefore, there are relatively compact sets arbitrarily close 
to the set V (t). Hence the set V (t) is also relatively compact in 
X.

Thus by Arzela-Ascoli theorem P2 is compact operator. 
These arguments above enable us to conclude that P = P1 + P2

is condense mapping on Bk, and by Theorem 2.1 there exists a 
fixed point z(.) for P on Bk, therefore the nonlocal Cauchy 
problem (1.1) has mild solution. Then the proof is completed.
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