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Abstract— Many research studies have examined human activity recognition and body posture and gait detection. Relatively 
fewer studies have investigated specifically into shaky, abnormal gait or how drunken person move in a low lit, uncontrolled 
setting. This research paper uses markers for tracking the body joints and legs, hands and face and used the position and 
movement of tracked features to train an SVM classifier for recognizing various abnormal actions while walking such as 
tripping, falling, shaking, walking side-ways, falling, dragging and walking with helps from others vs normal gait and standing 
posture. 5 subjects participated in script based simulated drunk actions, expressions and behaviour from a list of actions that 
represented an abnormal gait and drunk state of mind. The classification results showed 72.8% accuracy under controlled 
lighting. The accuracy was lower by 3.1% in dim indoor lighting and natural outdoor setup similar to those outside a bar or a 
low lit street at night. 
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I. INTRODUCTION 
The study by Holien [1] examined how the manner in which people walk affect authentication. The study used accelerometer sensor 
to find patterns in walking and recommended possible application in security. The study only tracked gait, using sensor on the left 
hip. Hayfron-Acquah [2], [3] evaluated generalized symmetry operator instead of relying on shapes and borders. The study used 
discrete Fourier transforms and nearest neighbour approach to find similarities in gaits of same person. In a study on human gait 
recognition Huang et. al [4] used spatio-temporal templates to identify human gait. The study used reference templates to compare 
the temporal changes in features and detect gait. Wang [5] used statistical shape dynamics to recognize human gait. The study 
discussed focussing on gait from the front making it view-dependent and only analysing static shapes leaving an opportunity for 
exploring impact of dynamic information. Researchers Zeng and Wang [6] used time-invariant representation of time-varying 
dynamical pattern to detect gait. The study used angular velocities and joint angles as features. Research by Wang et. al [7] 
examined gait recognition in non-frontal position and used features such as distance between legs and height. Results in study by 
Ismail [8] indicated left and right thigh features were significant in improving detection rate. The study focused on abnormal gait 
patterns like dragging and drunken walk. Studies [9], [10], [11], [12], [13], [14], [15] have used 3D data for real time detection using 
probabilistic approaches such as hidden markov model (HMM) and view invariant techniques. Researcher in [16] through [36] have 
analysed emotions in detail using multiple modalities and temporal and pose based techniques. The studies also discuss efficient 
software implementation methods for real time image processing and human activity detection. Research done in [37] through [54] 
contain surveys and comparisons of state of the art human activity recognition mechanisms. 

II. METHOD 
A total of 5 participants were used to enact from a list of 10 actions and 1 normal walking activity. Markers were applied to 
participants tracking points on the face, hand, body and legs. The data was annotated using 1 class labels associated with each of the 
6 actions. The data was split into 80% for training and 20% for test. The SVM classifiers for each action was trained using 10-fold 
cross validation. A total of 20 markers on the body and 20 on the face were used to track the drunken human gait. The feature vector 
consisted of movement of each tracked point for 3 second window measured in terms of velocity, the x,y,z co-ordinates of each 
point and the distance of each point from the reference point on the back. The participants were shown the 10 actions as reference 
and spontaneously moved as if they were drunk.  

 
Fig. 1. The six actions with limited movement and more activity on the spot. 
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Fig. 2. The four actions involving drunken walking. 

III. RESULTS 
0.697 0.022 0.02 0.066 0.068 0.078 0.048 Drunk action 1 
0.126 0.775 0.004 0.034 0.032 0 0.03 Drunk action 2 
0.166 0.025 0.69 0.031 0.046 0.028 0.014 Drunk action 3 
0.026 0.043 0.247 0.562 0.047 0.047 0.029 Drunk action 4 

0.02 0.039 0.046 0.085 0.735 0.032 0.043 Drunk action 5 
0.056 0.015 0.048 0.02 0 0.672 0.189 Drunk action 6 
0.088 0.044 0.07 0.027 0.019 0.025 0.728 Normal walk 

Fig.1. Confusion matrix for controlled lighting. 

The overall accuracy for the drunken and abnormal gait detection was 69.4%. Action 6 had a relatively higher rate of 
misclassification with normal walk compared to other actions. Normal walk was classified incorrectly mostly as drunken action 1 
(8.8%). 

0.644 0.021 0.054 0.064 0.08 0.076 0.061  
0.129 0.77 0.004 0.035 0.033 0 0.031  
0.174 0.026 0.677 0.032 0.048 0.029 0.014  
0.023 0.038 0.216 0.547 0.065 0.054 0.057  
0.035 0.035 0.127 0.077 0.66 0.028 0.038  
0.054 0.015 0.046 0.019 0.034 0.649 0.182  
0.084 0.042 0.067 0.025 0.063 0.024 0.695  

The overall accuracy for the abnormal human gait detection decreased under dim indoor lighting and natural outdoor settings. The 
accuracy dropped from 72.8% to 69.5% in terms of recall rate for normal gait. The overall accuracy of drunk action recognition 
recall rates dropped by 3.1%. 

IV. CONCLUSIONS 
The system performed at a higher accuracy level under controlled lighting compared to accuracy levels in indoor dim lighting or 
outdoor naturalistic settings. This showed that more features need to be explored and the classifier needs to be trained with more 
data before the results can be generalized. The number of participants 5 was less and as a future scope higher number of participants 
in more natural lighting would need to be used for training the recognition system. 
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