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Abstract: The quadratic Diophantine equation representing an infinite cone given by ࢞)ࢻ૛ + (૛࢟ = (૛ࢻ − ૚)࢟࢞ +
(૝ࢻ − ૚)ࢠ૛,    ࢻ ∈  is analyzed for its non-zero distinct integer points. Few different patterns of integer points satisfying the    ,ࡺ
infinite cone under consideration are obtained. 
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I. INTRODUCTION 
Number theory is, as the name suggests, is devoted to the study of numbers, first and foremost integers. The classical problems in 
Number Theory are often easy to formulate knowing some basic mathematics and this makes the area attractive. It is often only the 
formulation are simple, proofs are very long, complicated and requires excessive numerical work. 
A great deal of number theory also arises from the study of the solutions in integers of a polynomial equation ݂(ݔଵ,ݔଶ, (௡ݔ… = 0, 
called the Diophantine equation. They have fewer equations than unknown variables and involve integers that work correctly for all 
equations. Quadratic Diophantine equations are extremely important in Number theory. There are several Diophantine equations 
that have no solutions, trivial solutions, finitely or infinitely many solutions. This communication concerns with interesting ternary 
quadratic equation ݔ)ߙଶ + (ଶݕ = ߙ2) − + ݕݔ(1 ߙ4) − ߙ, ଶݖ(1 ∈  representing an infinite cone for determining its infinitely  ,ࡺ
many non-zero lattice points. 

II. METHOD OF ANALYSIS 
The ternary quadratic equation studied for its non-zero distinct integer solutions 
is given by   

ଶݔ)ߙ                                                                + (ଶݕ = ߙ2) − + ݕݔ(1 ߙ4) −  ଶ                                                                        (1)ݖ(1

Pattern 1: 

Introducing the linear transformations 

ݔ                                                                          = ݑ + ݕ   ,ݒ = ݑ −  (2)                                                                                             ݒ

(2) in (1), it leads to  

ଶݑ                              = ߙ4) − ଶݖ)(1 −  ଶ)                                                                                           (3)ݒ

Equation (3) can be written as  

                                                                 ௨
(ସఈିଵ)(௭ା௩) = ௭ି௩

௨
= ௣

௤
ݍ  ,(ݕܽݏ)   ≠ 0.                                                                            (4) 

which is equivalent to the system of  equations 

ݑݍ + ߙ4) − ݒ݌(1 − ߙ4) − ݖ݌(1 = 0 

ݑ݌                                                                            + ݒݍ − ݖݍ = 0 
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On employing the method of cross multiplication, we get 

ݔ = ߙ4)2 − ݍ݌(1 − ߙଶ(4݌ − 1) +  ଶݍ

ݕ = ߙଶ(4݌ − 1) + ߙ4)2 − ݍ݌(1 −  ଶݍ

ݖ                                                                                   = ߙଶ(4݌ − 1) +  ଶݍ

Pattern 2:  
 Equation (3) can be written as  

                                                              ௨
(௭ା௩) = (ସఈିଵ)(௭ି௩)

௨
= ௣

௤
,(ݕܽݏ)   ݍ ≠ 0.                                                                              (5) 

Proceeding as above, we obtain  
ݔ                                                                      = ߙ4)ݍ݌2 − 1) − ଶ݌ + ߙଶ(4ݍ − 1)  

ݕ                                                              = ଶ݌ + ߙ4)ݍ݌2 − 1) − ߙଶ(4ݍ − 1) 

ݖ                                                                       = ߙଶ(4ݍ − 1) +  ଶ݌

Pattern 3: 
Equation (3) also can be also written as 
                                      
                                                                 ௨

(ସఈିଵ)(௭ି௩) = ௭ା௩
௨

= ௣
௤

ݍ   (ݕܽݏ)  ≠ 0                                                                               (6) 

Proceeding as above, we obtain 

ݔ                                                         = ଶݍ − ߙ4)2 − ݍ݌(1 − ߙ4) −  ଶ݌(1

ݕ                                                         = ߙଶ(4݌ − 1)− ଶݍ − ߙ4)2 −  ݍ݌(1

ݖ                                                          = ߙଶ(4݌− − 1)−  ଶݍ

Pattern 4: 
Equation (3) also can be also written as 
                                      
                                                         ௨

(௭ି௩) = (ସఈିଵ)(௭ା௩)
௨

= ௣
௤

ݍ   (ݕܽݏ)  ≠ 0                                                                                

Proceeding as above, we obtain 

ݔ                                                         = ߙଶ(4ݍ − 1) − ߙ4)2 − ݍ݌(1 −  ଶ݌

ݕ                                                         = ଶ݌ − ߙଶ(4ݍ − 1)− ߙ4)2 −  ݍ݌(1

ݖ                                                          = ଶ݌− − ߙଶ(4ݍ − 1) 

Pattern 5:  
Equation (3) can be written as  

ଶݑ                                                                       + ߙ4) − ଶݒ(1 = ߙ4) − 1) ∗  ଶ                                                                                (7)ݖ
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Assume                                                     ݖ = ܽଶ + ߙ4) − 1)ܾଶ                                                                                                    (8) 

Considering (4ߙ − ߙ4)                         ݏܽ(1 − 1) = ൫݅√4ߙ − 1൯൫−݅√4ߙ − 1൯                                                                          (9) 

Substituting (8) and (9) in (7) and applying the method of factorization 

ݑ                                        + ݅ඥ(4ߙ − ݒ (1 = ݅ඥ(4ߙ − 1) ൫ܽ + ߙ4√݅ − 1 ܾ൯
ଶ
                                                            (10) 

Equating the real and imaginary parts, we have    

ݑ                                                                = ߙ4)2− − 1)ܾܽ; ݒ    = ܽଶ − ߙ4) − 1) ܾଶ                                                                  (11) 

Using (11), (8) and (2), we obtain the integral solutions to (1) as presented below: 

ݔ = ܽଶ − ߙ4) − 1)ܾଶ − ߙ4)2 − 1)ܾܽ 

ݕ = ߙ4) − 1)ܾଶ − ܽଶ − ߙ4)2 − 1)ܾܽ 

ݖ                                                                             = ܽଶ + ߙ4) − 1)ܾଶ. 

Pattern 6: 
Equation (3) can be written as  

ଶݑ                                                                    − ߙ4) − 1) ∗ ଶݖ = ߙ4)− −  ଶ                                                                         (12)ݒ(1

Assume                                                                ݒ = ܽଶ − ߙ4) − 1)ܾଶ                                                                                      (13) 

Considering −(4ߙ − 1)  as 

ߙ4)−                                                              − 1) = ൫√4ߙ − 1൯൫−√4ߙ − 1൯                                                                            (14) 

Substituting (13) and (14) in (12) and applying the method of factorization 

ݑ                                                         + ඥ(4ߙ − ݖ (1 =  ඥ(4ߙ − 1) ൫ܽ + ߙ4√ − 1 ܾ൯
ଶ
                                                                (15) 

Equating the rational and irrational parts, we have    

ݑ                                                           = ߙ4)2 − 1)ܾܽ; ݖ    = ܽଶ + ߙ4) − 1) ܾଶ                                                                       (16) 

Using (13), (14) and (16), we obtain the integral solutions to (1) as presented below: 

ݔ = ܽଶ + ߙ4) − 1)(2ܾܽ − ܾଶ) 

ݕ = ߙ4) − 1)(2ܾܽ + ܾଶ)− ܽଶ 

ݖ                                                                                          = ܽଶ + ߙ4) − 1)ܾଶ 

III. CONCLUSION 
The ternary quadratic Diophantine equations are rich in variety. One may search for other choices of Diophantine equations to find 
their corresponding integer solutions. 
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