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Abstract: Image denoising is a technique which removes out noise which is added in the original image. Noise reduction is an 
important part of image processing systems. An image is always affected by noise. Image quality may get disturbed while 
capturing, processing and storing the image. Noise is nothing but the real world signals and which are not part of the original 
signal. Removal of noise is an important step in the image restoration process, and remains a challenging problem in spite of the 
sophistication of recent research. Image denoising involves the manipulation of the image data to produce a visually high quality 
image. This report presents a comparison of three  image denoising methods, all minimizing the variation of an image – Dual-
tree complex DWT,Surelet denoising method and Bayes estimate denoise method. These algorithms are compared based on their 
assumptions and shortcomings using a methodology that examines the Peak signal-to-noise ratio (PSNR), Mean Square Error 
(MSE) ,Structural Similarity Index (SSIM) and overall quality of the denoised image. 
Keywords: PSNR,MSE, SSIM and denoising 

I. INTRODUCTION 
Digital images are most suitable way of transmitting visual information from one place to another thus it is very useful, both in 
applications like television magnetic resonance imaging computer tomography and in field of science and technology such as 
geographical information system and astronomy. The devices like image sensors assemble the sets of data which is frequently 
contaminated by noise due to device failures. Also noise can lead due to communication errors and compression. Hence before 
image data is inspected and processed reduction of noise compulsory. Thus a technique is required to imitate the original image [1]. 
A very large portion of digital image processing is devoted to image restoration. This includes research in algorithm development 
and routine goal oriented image processing. Image restoration is the removal or reduction of degradations that are incurred while the 
image is being obtained [2]. Degradation comes from blurring as well as noise due to electronic and photometric sources. Blurring is 
a form of bandwidth reduction of the image caused by the imperfect image formation process such as relative motion between the 
camera and the original scene or by an optical system that is out of focus [3]. When aerial photographs are produced for remote 
sensing purposes, blurs are introduced by atmospheric turbulence, aberrations in the optical system and relative motion between 
camera and ground. In addition to these blurring effects, the recorded image is corrupted by noises too. A noise is introduced in the 
transmission medium due to a noisy channel, errors during the measurement process and during quantization of the data for digital 
storage. Each element in the imaging chain such as lenses, film, digitizer, etc. contribute to the degradation. 

II. RELATED WORKS 
In [5] Kaibing Zhang , Xinbo Gao , Dacheng Tao  and Xuelong Li states a general model for the SR problem assumes that an LR 
image y is generated from the corresponding HR image X through a sequence of degradation factors including (i) a blur operation 
H, (ii) a down-sampling step represented by S, and (iii) an additive zero-mean white and Gaussian noise.                                   
Therefore, the goal of single image SR reconstruction is solving the inverse problem to estimate the underlying HR image X using 
only one observation y. However, due to blurring, down-sampling, and noising, one LR image may correspond with many different 
HR images, so the SR problem is severely undetermined. In such a case, it is crucial important to incorporate a certain effective 
prior knowledge (denoted as a regularization term) into the reconstruction process. Given a regularization term, the maximum a 
posterior probability (MAP) estimation. In [6] Chen Huang , Xiaoqing Ding , Chi Fang states that a Single image super-resolution 
(SR) methods can be broadly categorized into three classes: interpolation-based methods, reconstruction-based meth- ods , and 
example-based methods . The reconstruction-based methods often incorporate prior knowledge to regularize the ill-posed problem. 
For example, Zhang et al. assembled the Steering Kernel Regression (SKR)-based local prior and Nonlocal Means  (NLM)- based 
nonlocal prior. The example-based methods strongly rely on the chosen dictionary for satisfactory results. This paper focuses on 
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learning good image priors and robust dictionaries for SR reconstruction. Among the extensively studied natural image priors, we 
choose to exploit the local structural regularity prior and nonlocal self-similarity prior in a coherent framework. In [7], This paper 
addresses the problem of generating a super resolution (SR) image from a single low-resolution input image. We approach this 
problem from the perspective of compressed sensing. The low-resolution image is viewed as down sampled version of a high-
resolution image, whose patches are assumed to have a sparse representation with respect to an over-complete dictionary of 
prototype signalatoms. The principle of compressed sensing ensures that under mild conditions, the sparse representation can be 
correctly recovered from the down sampled signal. We will demonstrate the effectiveness of sparsity as a prior for regularizing the 
otherwise ill-posed super-resolution problem. We further show that a small set of randomly chosen raw patches from training 
images of similar statistical nature to the input image generally serve as a good dictionary, in the sense that the computed 
representation is sparse and the recovered high-resolution image is competitive or even superior in quality to images produced by 
other SR methods. In [8] The growing interest in image scaling is mainly due to the availability of digital imaging devices such as, 
digital cameras, digital camcorders, 3G mobile handsets, high definition monitors etc. Scaling a digital image is a demanding and 
very important area of research. Image scaling is an important image processing operation applied in diverse areas in computer 
graphics. Image scaling can be especially useful when one needs to reduce image file size for email and web documents or increase 
image size for printing, GIS observation, medical diagnostic etc. With the recent advances in imaging technology, digital images 
have become an important component of media distribution. In addition, a variety of displays can be used for image viewing, 
ranging from high-resolution computer monitors to TV screens and low-resolution mobile devices. This paper is focused on 
different image scaling techniques with intent that review to be useful to researchers and practitioners interested in image Scaling. 
This paper [9] addresses the problem of generating a High-resolution (HR) image from a single Low-resolution (LR) image. We 
propose the super-resolution reconstruction approach based on sparse representation and low-rank matrix completion. The approach 
represents images in forms of sparse and rearranges image regions into the low dimension construction matrices of low rank. High-
frequency details of image are restored using the sparse representation which is recovered from the down-sampled images. For paths 
at the same position of multiple pictures which are obtained by several super resolution reconstructions are highly correlated, they 
are arranged to be a matrix of low-rank which can be completed exactly from corrupted entries. Experiment results demonstrate that 
the proposed method significantly improves the PSNR and visual quality of reconstructed high-resolution images. 

III. PROPOSED WORK 
A. Wavelet Transforms and Denoising 

1) Wavelet Transform Domain: A Fourier Transform (FT) is only able to retrieve the global frequency content of a signal, the 
time information is lost. A multi-resolution analysis becomes possible by using wavelet analysis. The Wavelet Transform 
(WT) retrieves frequency and time content of a signal. The basic types of wavelet transform are namely, i) Continuous 
Wavelet Transform (CoWT) ii) Discrete Wavelet Transform (DWT) iii) Complex Wavelet Transform (CWT). A multi-
resolution analysis is not possible with Fourier Transform (FT) and Short Time Fourier Transform (STFT) and hence there 
is a restriction to apply these tools in image processing systems; particularly in image denoising applications. The multi-
resolution analysis becomes possible by using wavelet analysis. A Continuous Wavelet Transform (CoWT) is calculated 
analogous to the Fourier transform (FT), by the convolution between the signal and analysis function. The Discrete Wavelet 
Transform uses filter banks to perform the wavelet analysis. Image denoising means usually compute the soft threshold in 
such a way that information present in image is preserved. A block schematic of Wavelet based image denoising technique 
is shown in Fig. 3.5. Here the basic steps of wavelet based image denoising are given below. 1. Decompose corrupted image 
by noise using wavelet transform. 2. Compute threshold in wavelet domain and apply to noisy coefficients. 

2) Discrete Wavelet Transform (DWT) – Principles: Wavelets are mathematical functions that analyze data according to scale 
or resolution [13]. They aid in studying a signal in different windows or at different resolutions. For instance, if the signal is 
viewed in a large window, gross features can be noticed, but if viewed in a small window, only small features can be 
noticed. Wavelets provide some advantages over Fourier transforms. For example, they do a good job in approximating 
signals with sharp spikes or signals having discontinuities.Wavelets can also model speech, music, video and non-stationary 
stochastic signals. Wavelets can be used in applications such as image compression, turbulence, human vision, radar, 
earthquake prediction, etc. [13].The term “wavelets” is used to refer to a set of orthonormal basis functions generated by 
dilation and translation of scaling function φ and a mother wavelet ψ [14]. The finite scale multi resolution representation of 
a discrete function can be called as a discrete wavelet transform [15]. DWT is a fast linear operation on a data vector, whose 



www.ijraset.com                                                                                                                 Volume 4 Issue X, October 2016 
IC Value: 13.98                                                                                                                  ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET: All Rights are Reserved 
611 

length is an integer power of 2. This transform is invertible and orthogonal, where the inverse transform expressed as a 
matrix is the transpose of the transform matrix. The wavelet basis or function, unlike sines and cosines as in Fourier 
transform, is quite localized in space. But similar to sines and cosines, individual wavelet functions are localized in 
frequency.  

B. Image denoising techniques  
1) The Dual-Tree DWT: By introducing Complex wavelet transforms (CWT) concept, we can achieve Dual-Tree Complex DWT 

system. Kingsbury’s complex Dual-Tree DWT is based on (approximate) Hilbert pairs of wavelets [17]. Kingsbury found that 
the Dual-Tree DWT is nearly shift-invariant when the lowpass filters of one DWT interpolate midway between the lowpass 
filters of the second DWT [18]. The Dual-Tree Complex DWT can be implemented using two critically-sampled DWTs in 
parallel as shown in the Fig. 3. This transform gives 2N DWT coefficients for an N-point signal. Hence this transform is known 
as 2-times expansive. Here the filters are designed in such a way that the subband signals of the upper DWT can be interpreted 
as the real  part of a CWT and subbands signals of the lower DWT can be interpreted as the imaginary part. For specially 
designed sets of filters, the wavelet associated with the upper DWT can be an approximate Hilbert transform of the wavelet 
associated with the lower DWT. In this manner, the designed DTCWT is nearly shift-invariant than the critically-sampled DWT 
[19]-[22]. The DTCWT gives wavelets in six distinct directions. In each direction, there are two wavelets. In each direction, one 
of the two wavelets can be interpreted as the real part and the other wavelet can be interpreted as the imaginary part of a 
complex-valued two dimensional (2D) wavelet. The DTCWT is implemented as four critically sampled separable 2D DWTs 
operating in parallel. However, different filter sets are used along the rows and columns [19]-[22]. Fig. 3.7 indicates that a 
flowchart of Dual-Tree Complex DWT. This illustrates the steps of implementation of DTCWT. 

2) Surelet denoising: Image denoising based on the image-domain minimization of an estimate of the mean squared error-Stein’s 
Unbaised Risk Estimate(SURE). Unlike. most existing denoising algorithms, using the SURE makes it needless to hypothesize 
a statistical model for the noiseless image. The nonlinear processing is performed in a transformed domain—typically, an 
undecimated discrete wavelet transform, but we also address non orthonormal transforms—this minimization is performed in 
the image domain. Indeed, we demonstrate that, when the transform is a “tight” frame (an undecimated wavelet transform using 
orthonormal filters), separate subband minimization yields substantially worse results. In order for our approach to be viable, 
we add another principle, that the denoising process can be expressed as a linear combination of elementary denoising 
processes—linear expansion of thresholds (LET). Armed with the SURE and LET principles, we show that a denoising 
algorithm merely amounts to solving a linear system of equations which is obviously fast and efficient. Quite remarkably, the 
very competitive results obtained by performing a simple threshold (image-domain SURE optimized) on the undecimated Haar 
wavelet coefficients show that the SURE-LET principle has a huge potential[23]. Surelet denoise removes addtitive gaussian 
white noise using the inter-scale sure-let principle in the framework of an Orthonormal Wavelet Transform (OWT) only. This 
approach is made possible by the existence of an excellent unbiased estimate of the mean squared error (MSE) between the 
noiseless image and its denoised version- Stein’s unbiased risk estimate (SURE). If we evaluate denoising performances by 
comparing PSNRs, then this MSE is precisely the quantity that we want to minimize. Similar to the MSE, the SURE takes the 
form of a quadratic expression in terms of the denoised image. This may consists in reformulating the denoising problem as the 
search for the denoising process that will minimize the SURE—in the image domain. In practice, the process is completely 
characterized by a set of parameters. Now, to take full advantage of the quadratic nature of the SURE, we choose to consider 
only denoising processes that can be expressed as a linear combination of “elementary” denoising processes—linear expansion 
of thresholds (LET). This “SURE-LET” stategy is computationally very efficient because minimizing the SURE for the 
unknown weights gives rise to a mere linear system of equations, which in turn allows to consider processes described by quite 
a few parameters. There is, however, a tradeoff between the sharpness of the description of the process which increases with the 
number of parameters, and the predictability of the MSE estimate, which is inversely related to the number of parameters. We 
have already applied our approach within a non ,redundant, orthonormal wavelet framework, and showed that a simple 
thresholding function that takes interscale dependences into account is very efficient, both in terms of computation time and 
image denoising quality [24] The best-known use of the SURE in image denoising is Donoho’s Sure Shrink algorithm [25] in 
which a soft-threshold is applied to the orthonormal wavelet coefficients, and where the threshold parameter is optimized 
separately in each subband through the minimization of the SURE. Otherwise, the approach that is most closely related to 
SURE-LET—but for a multichannel image denoising application—is the contribution by Pesquet and his collaborators which 
perform separate in-band minimization of the SURE applied to a denoising process that contains both nonlinear and linear 



www.ijraset.com                                                                                                                 Volume 4 Issue X, October 2016 
IC Value: 13.98                                                                                                                  ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET: All Rights are Reserved 
612 

parameters. 
SURE-LET for redundant or nonorthonormal transforms lies in the fact that this minimization is performed in the image domain. 
While it is true that, due to some Parseval-like MSE conservation, image domain MSE/SURE minimization is equivalent to separate 
in-band MSE/SURE minimization whenever the analysis transformation is—nonredundant—orthonormal [26], this is grossly wrong 
as soon as the transformation is, either redundant (even when it is a “tight frame”) or non orthonormal. This is actually the 
observation made by those who apply soft-thresholding to an undecimated wavelet transform: the Sure Shrink threshold 
determination yields substantially worse results than an empirical choice. Unfortunately, this may lead practitioners to wrongly 
conclude that the SURE approach is unsuitable for redundant transforms, whereas a correct diagnosis should be that it is the 
independent subband approach that is flawed. 
3) Bayesian Estimation: Speckle is an inherent characteristic of images acquired with any imaging technique that is based on 

detection of coherent waves, for example synthetic aperture radar (SAR), ultrasound, coherent optical imaging, etc. Speckle 
carries information about both the structure of the imaged object as well as a noise component, and the latter is responsible for 
the grainy appearance of the images. Optical coherence tomography (OCT) is an imaging technique capable of noncontact, high 
resolution (few micrometers), 3D imaging of the structure of optically semitransparent objects, including biological tissue. 
Bayesian estimation process is used to optimize the removal of Poisson noise. Bayesian estimation is a framework for the 
formulation of statistical inference problems. In the prediction or estimation of a random process from a related observation 
signal, the Bayesian philosophy is based on combining the evidence contained in the signal with prior knowledge of the 
probability distribution of the process. Bayesian methodology includes the classical estimators such as maximum a posteriori 
(MAP), maximum-likelihood (ML), minimum mean square error (MMSE) and minimum mean absolute value of error (MAVE) 
as special cases. The hidden Markov model, widely used in statistical signal processing, is an example of a Bayesian model. 
Bayesian inference is based on minimization of the so-called Baye’s risk function, which includes a posterior model of the 
unknown parameters given the observation and a cost-of-error function.           

IV. RESULT AND OBSERVATION 
In this section we will discuss the obtained results of our experiments. Tool required for the experimentation is MATLAB with 
Image Processing toolbox. We used  images to enumerate the performance of the algorithms. Our dataset includes standard test 
images selected from the  image database. We will evaluate the data for the image.We compare our denoised images by three 
parameters PSNR ,MSE and SSIM. Fig 4.1 shows the denoising results of the test image  with  different methods. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Fig 4.1 The denoised results of image snow hill by different schemes. (a) Noisy image (b) Dual tree DWT (c) SURELET method 
(d) Bayesian estimation 
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V. COMPARISON TABLE 
 Comparison of PSNR (Peak Signal to Noise ratio) ,MSE (Mean Square Error) and SSIM (Structural Similarity Index) using Dual 
tree DWT ,Surelet and Baye’s Estimator shown in fig  

 

 

 

 

 

 

Fig 4.2 Comparison of PSNR, MSE and SSIM 

The paper emphasizes on the PSNR, MSE and SSIM for various noises using Dual tree DWT,SURE LET and Bayesian Estimator. 
The Results shows that SURELET  denoise Optimizes the addtitive gaussian white noise using the inter-scale sure-let principle in 
the framework of an Orthonormal Wavelet Transform (OWT) only. removal as its Peak Signal to Noise ratio (PSNR) is maximum 
and least Mean square error (MSE) and maximum Structural Similarity Index (SSIM). The PSNR for speckle noise is maximum and 
the MSE is minimum and also SSIM is maximum. Our experimental results demonstrated that SURELET denoise has the highest 
PSNR and SSIM measures The simulation results reveal that wavelet based SURELET denoise  method outperforms other  
methods. 

VI. CONCLUSION 
In this paper, the important property of a good image denoising model should completely remove noise as far as possible as well as 
preserve edges. comparison of various Wavelets at different decomposition levels has been done in this paper. A comparison of 
various wavelet based methods has also been carried out to denoise the image. The paper emphasizes on the PSNR, MSE and SSIM 
for various noises using Dual tree DWT, SURE LET and Bayesian Estimator. The Results shows that SURELET  denoise 
Optimizes the addtitive gaussian white noise using the inter-scale sure-let principle in the framework of an Orthonormal Wavelet 
Transform (OWT) only. removal as its Peak Signal to Noise ratio (PSNR) is maximum and least Mean square error (MSE) and 
maximum Structural Similarity Index (SSIM). The PSNR for speckle noise is maximum and the MSE is minimum and also SSIM is 
maximum. Our experimental results demonstrated that SURELET denoise has the highest PSNR and SSIM measures The 
simulation results reveal that wavelet based SURELET denoise  method outperforms other  methods . 
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