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 Abstract:  In this work, MHD effect on free convective flow of a stratified fluid through a porous medium bounded by a vertical 
plane is investigated. Considering both viscous and Darcy dissipations, the temperature of the plate is varying linearly along the 
vertical direction. Analytical solutions of momentum and energy equations are obtained by Perturbation technique. The 
dimensionless Skin friction co-efficient and Nusselt number are also estimated. The effects of various physical parameters like 
Prandtl number Pr, Hartmann number Ha, Darcy resistance parameter σ, buoyancy force parameter N and equilibrium 
temperature gradient parameter AT on velocity and temperature distribution are analyzed through graphs. 
Keywords : Free convection, porous medium, viscous dissipation, MHD and stratified fluid.  

I. INTRODUCTION 
Free and forced convection flows in a saturated porous media are of great interest because of their various engineering, scientific 
and industrial applications in heat and mass transfer which occurs in the fields of design of chemical processing equipment, 
formation and dispersion of fog, distributions of temperature and moisture over agricultural fields and groves of fruit trees and 
damage of crops due to freezing and pollution of the environment, grain storage systems, heat pipes, packed microsphere insulation 
distillation towers, ion exchange columns, subterranean chemical waste migration, solar power absorbers etc. 
Hadhrami, Ellott and Ingham (2003) obtained a new model for viscous dissipation in porous media across a range of permeability 
values and found unified mathematical theory for the viscous dissipation term in the governing Brinkman equation. Rudraiah and 
Nagaraj (1977) studied the effect of Darcy and viscous resistances on the fully developed natural convection of a fluid between two 
heated vertical plates. Effects of viscous dissipation on fully developed forced convection in porous media have been studied by 
Yew-Mun Hung (2009). Raptis (1983) studied the unsteady free convection flow through a porous medium bounded by an infinite 
vertical plate. Anjali Devi and Ganga (2009) studied the effects of viscous and joules dissipation on MHD flow with heat and mass 
transfer past a stretching porous surface embedded in a porous medium. MHD free convection flow through a porous medium in a 
rotating fluid has been studied by Ram and Jain (1990).  Raptis and Perdikis (1983) obtained the velocity and temperature fields 
when the temperature of the fluid and temperature away from the surface have a difference which varies as some power of time. 
Maria Neagu (2016) investigated Natural convection process triggered in a fluid saturated thermally stratified porous medium by a 
vertical impermeable wall of constant heat flux and concentration. 
Convective motion in a porous medium has attracted considerable attention from many researches because of its application in 
geophysics, oil recovery technique, thermal insulation, engineering and heat storage. The study of electrically conducting fluid has 
many applications in engineering problems such as magnetohydrodynamics (MHD) generators,  plasma studies, nuclear reactors, 
geothermal energy extraction and boundary layer in the field of aerodynamics. In view of the applications of free convective and 
heat transfer flows through porous medium under the influence of magnetic field many researchers have studied 
magnetohydrodynamic free convective heat transfer flow in a porous medium. The differential solar rotation may be the long-term 
effect of magnetic drag at the poles of the sun, an magnetohydrodynamic phenomenon due to the Parker spiral shape assumed by the 
extended magnetic field of the Sun.  In this work, steady two dimensional MHD free convection flow of a thermally stratified 
viscous fluid through a porous medium bounded by a heated vertical plate taking into account both viscous and Darcy dissipations is 
considered. The main objective is to find the effect of equilibrium temperature gradient of the fluid on the flow.  

II. MATHEMATICAL FORMULATION 
Consider a steady two dimensional free convection flow of a thermally stratified viscous fluid through a highly porous medium 
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bounded by a vertical plane. The flow is assumed to be in the y direction, which is chosen along the plate in the upward direction 
and x-axis normal to plate. A uniform magnetic field is applied in the direction perpendicular to the plate. The basic governing 
equations are 
Continuity equation  

∇. q⃗ = 0                                                                                                                                                                                              

Momentum equation 

ρ (q⃗′.∇)q⃗′ =  −∇p−
μ
k q⃗ + μ∇ q⃗ − ρ g⃗ − j × B                                                                                                                     

 Energy equation 
ρC (q⃗.∇)T = k∇ T +φ                                                                                                                                                                

  We take a Cartesian coordinate system with the 푦′-axis vertically upward along the plate and the 푥′-axis normal to it. Now 
the temperature, density and pressure of the fluid can be written as 
  T = T + θ′,   ρ′ = ρ − αρ θ′ ,  P = P + P ,  T = T + A  ,  ρ = ρ (1− αT )      
   = −ρ g                                                                                                                                                                                         

 휃′ , 푝  are the deviation of temperature and pressure, the constant 퐴 (> 0) is the equilibrium temperature gradient of the fluid, the 
constants 휌  and 푇  are the reference density and temperature respectively and 훼 is the coefficient of volume expansion. We assume 
the surface temperature of the plate in the form  T = T + T  where 푇 (> 0) is constant. 
Here the motion takes place only due to the temperature gradient in the plate. The plate being assumed infinite along the 푦′-axis, the 
field variables θ′ and q⃗  are taken to be independent of 푦′. Then using the equation of continuity and applying Boussinesq 
approximation the equation of motion (2) becomes 

ν
d v′
dx′ −

ν
k′v + αgθ − Ha = 0                                                                                                                                                      

The energy equation becomes 

k
d θ′
dx′ + ρ ν(

dv′
dx′) +

νρ
k′ v′ − c ρ A v = 0                                                                                                                          

The corresponding boundary conditions for the velocity and temperature fields are  
 v = 0,    θ = T     at   x′ = 0                                                                                                                                                              

 v → 0,    θ → 0    at  x′ → ∞                                                                                                                                                         
Where 푣′ is the velocity component along the 푦′-axis, k is the thermal conductivity, 푐  is the specific heat at constant pressure, 
ν = μ/ρ  and the second and the third term in the energy equation (6) represent the viscous and Darcy dissipation respectively. 
Introducing the non-dimensional variables v = v /β, x = x β/v, θ = θ′/T  where β = (αgνT ) /  has dimension of velocity, the 
above equations (6) and (7) take the form 

d v
dx − σ v + θ − Ha = 0                                                                                                                                                               

 
d θ
dx + N

dv
dx + Nσ v − PA v = 0                                                                                                                                        

The modified boundary conditions are 
휃 = 1,   v = 0,   at  x = 0                                                                                                                                                                       

 v → 0,θ → 0   as  x → ∞                                                                                                                                                              
where 
σ   =  ν/√k β  (Darcy resistance parameter)  
N  =  ρ νβ /kT   (Buoyancy force parameter)  
Pr   =  휌 푐 휈/푘  (Prandtl number)  

Ha =   (Hartmann number)                     
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 A = νA /T β  (equilibrium temperature gradient parameter). 

III. SOLUTION OF THE PROBLEM 
The coupled equations (8) and (9) are non-linear due to dissipation terms. However, in many practical problems N is small and 
therefore, with N as a perturbation parameter the perturbation technique is applied to solve the above equations. 
   we write 
v(x) =  v (x) + N v (x) + 0(N )                                                                                                                                                                      
θ(x) =  θ (x) + Nθ (x) + 0(N )                                                                                                                                                                                        
 where  
             푣 , 휃  are the solutions corresponding to N = 0 i.e., when the dissipations are neglected. 
By substituting equation (11) in equations (8) and (9) and equating the coefficients of like powers of N  
The zeroth order equations are 

v − σ v + θ − Hav = 0                                                                                                                                                                
θ − PA v = 0                                                                                                                                                                         

The first order equations are 
 v − σ v + θ − Hav = 0                                                                                                                                                                

 θ − v′ + σ v − PA v = 0                                                                                                                                                  
 The corresponding boundary condition (10) reduces to 

v = 0,   v = 0,   θ = 1,   θ = 0   at  x = 0                                                                                                                                   
v → 0,   v → 0,   θ → 0,   θ → 0   as x → ∞                                                                                                                                                                                          
Where primes denote differentiation with respect to x. 
   Solving the equations (12) and (13) with the help of (14) we get 푣 , 휃 ,  푣 , 휃  respectively and from (11) we finally get the 
expressions of velocity and temperature in the form 
v = M e − e

+ N A e + A e

+ M
(σ + α )e

3α (4α − β ) + 4Haα +
(σ + β )e

3β (4β − α ) + 4Haβ −
2(α β + σ )e ( )

α β (β + 2α )(α + 2β ) + Haα + 2Haα β  

                                                                                                                                                                                    (15)                                         
θ = (α − σ )[M− A N]e + (β − σ )[M− A N]e                     

+N + ( ) −
( ) ( ( ) )

( )( )                                                            

Where 

  α =
(σ + Ha) + √λ

2            

   β =
(σ + Ha)− √λ

2      

   A =
−M (σ + α )(4α − β )
3α (4α − β ) + 4Haα −

M (σ + β )(3β )
3β (4β − α ) + 4Haβ +

2M (α β + σ )(α + 2α β )
α β (β + 2α )(α + 2β ) + Haα + 2Haα β  

  A =
−M (σ + α )(3α )

3α (4α − β ) + 4Haα −
M (σ + β )(4β − α )
3β (4β − α ) + 4Haβ −

2M (α β + σ )(β + 2α β )
α β (β + 2α )(α + 2β ) + Haα + 2Haα β  

 M = 1/ (훼 − 훽 )          and        λ = (σ + Ha) − 4PrA . 
For λ < 0,훼  and 훽 will become complex and the real part of (15) and (16) will be the solutions in this case. We can also obtain a 

solution in the case λ = 0 i.e.,  퐴  = (휎 +퐻푎) /4Pr. For very high permeability of the medium, the parameter 퐾 =  will be 
very large and the solution of the corresponding problem for the free flow of the fluid is obtained by making 휎 → 0 in our solution. 
The shear stress at the plate, in the non-dimensional form is given by 
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τ =   

τ = M (−β ) − (−α )

+ N A (−α ) + A (−β )

+ M
(σ + α )(−2α )

3α (4α − β ) + 4Hα +
(σ + β )(−2β )

3β (4β − α ) + 4Hβ −
2(α β + σ )(−(α + β ))

α β (β + 2α )(α + 2β ) + Hα + 2Hα β  

                                                                                                                                                                                                                         
The non dimensional co-efficient of heat transfer defined by Nusselt number as  
 Nu = −   

Nu = − (α − σ )[M− A N](−α ) + (β − σ )[M− A N](−β )

+ N
M (−2α )(σ + α )(σ − 4α )

3α (4α − β ) + 4Hα +
M (−2β )(σ + β )(σ − 4β )

3β (4β − α ) + 4Hβ

−
2M (−(α + β ))(α β + σ )(σ − (α + β ) )
α β (β + 2α )(α + 2β ) + Hα + 2Hα β  

                                                                                                                                                                     

 
Figure 1: Velocity profile for different Hartmann number (Ha) 

[N = 0.01, Pr = 0.71, σ = 1, 퐴  = -0.3] 

 
Figure 2: Velocity profile for different Darcy resistance parameter (휎) 
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[N = 0.01, Pr = 0.71, Ha = 1, 퐴  = -0.3] 

 
Figure 3: Velocity profile for different Buoyancy force parameter (N) 

[σ = 1, Pr = 0.71, Ha = 1, 퐴  = -0.3] 

 
Figure 4: Velocity profile for different Equilibrium Temperature gradient parameter (퐴 ) 

[σ = 1, Pr = 0.71, Ha = 1, N = 0.01] 

 
Figure 5: Temperature profile for different Hartmann number (Ha) 
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[σ = 1, Pr = 0.71, AT = 0.3, N = 0.01] 

 
Figure 6: Temperature profile for different Darcy resistance parameter (σ) 

[ Pr = 0.71, AT =  0.3, N = 0.01, Ha = 1] 

 
Figure 7: Shear Stress for different Hartmann number (Ha) 

[σ = 1, Pr = 0.71, N = 0.01, 퐴  = -0.3] 

 
Figure 8: Shear Stress for different Darcy resistance parameter (휎) 
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[N = 0.01, Pr = 0.71, Ha = 1, 퐴  = -0.3] 

 
Figure 9: Shear Stress for different Buoyancy force parameter (N) 

[σ = 1, Pr = 0.71, Ha = 1, 퐴  = -0.3] 

 
Figure 10: Shear Stress for different Equilibrium Temperature gradient parameter (퐴 ) 

[σ = 1, Pr = 0.71, Ha = 1, N = 0.01] 

 
Figure 11:  Nusselt number for different Hartmann number (Ha) 
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[σ = 1, Pr = 0.71, 퐴  = -0.3, N = 0.01] 

 
Figure 12:  Nusselt number for different Darcy resistance parameter (휎) 

[Ha = 1, Pr = 0.71, 퐴  = -0.3, N = 0.01] 

IV. RESULTS AND DISCUSSION 
The profile for velocity and temperature are shown through Figures 1 - 10. The momentum and energy equations are characterized 
by the Hartmann number (Ha), Darcy resistance parameter (휎), buoyancy force parameter (Pr), and equilibrium temperature 
gradient parameter (퐴 ) . We have calculated the co-efficient of skin friction and the rate of heat transfer in terms of Nusselt 
number by assigning specific values to the parameter involved in the problem 
The velocity profile for various Hartmann number (Ha = 1, 2, 3, 4) is shown in the Figure 1. It is found that with the increasing 
Hartmann number the velocity profile attains its maximum when x = 1 and converges to zero when x →∞.   
The velocity profile for various Darcy resistance parameter ( = 1, 2, 3, 4, 5) is shown in the Figure 2. The figure disciples that 
with the increasing Darcy resistance parameter the velocity profile decreases. 
The velocity profile for various buoyancy force parameter (N = 0.01, 0.02, 0.03, 0.04, 0.05) is shown in the Figure 3. It is clear from 
the figure that with the increasing buoyancy forces parameter the velocity profile decreases.  
The velocity profile for various equilibrium temperature gradient  (AT = -0.5, -0.3, -0.1, -0.05, 1.0) is shown in the Figure 4. It is 
known from the figure that with the increasing equilibrium temperature gradient the velocity profile is decreasing. 
The temperature profile for various Hartmann number (Ha = 2, 4, 7) is shown in the Figure 5. It is clear from the figure that with the 
increase in Hartmann number the temperature profile decreases. 
The temperature profile for various Darcy resistance parameter (σ = 0.91, 0.93, 0.95) is shown in the Figure 6. It is known that the 
increasing Darcy resistance parameter the temperature profile decreases. 
The shear stress for different Hartmann number (Ha = 1, 2,) is shown in the Figure 7. It is shown that the shear stress increases with 
increasing Hartmann number.   
The shear stress for different Darcy resistance parameter ( = 1, 2) is shown in the Figure 8. It is understood that the shear stress 
increases with increasing Darcy resistance parameter.   
The shear stress for different buoyancy force parameter (N = -0.01, 0.1) is shown in the Figure 9. It is seen that the shear stress 
increases with increasing buoyancy force parameter.   
The shear stress for different equilibrium temperature gradient parameter (AT = 0.05, 0.39) is shown in the Figure 10. The shear 
stress increases with increasing equilibrium temperature gradient parameter 
The rate of heat transfer in terms of Nusselt number for different Hartmann number (Ha = 1, 2) is shown in the Figure 11. It shows 
that the rate of heat transfer increases with decreasing Hartmann number. 
The rate of heat transfer in terms of Nusselt number for different Darcy resistance parameter ( = 1, 2) is shown in the Figure 12. 
Here the rate of heat transfer increases with increasing Darcy resistance parameter. 
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V. CONCLUSION 
In this study exact solution for the velocity field and temperature in the presence of Hartmann number, Darcy resistance parameter, 
Buoyancy force parameter, Prandtl number, and Equilibrium temperature gradient parameter are constructed. A magnetic field is 
applied transversely to the flow. The solution so obtained, depending on the initial and boundary conditions are presented as sum of 
the non dimensional parameters which occurs in the problem under study. 
The following conclusions are made Velocity increases with the decrease in Hartmann number, Darcy resistance parameter, 
buoyancy force parameter, Prandtl number and equilibrium temperature gradient. Temperature increases with decrease in Hartmann 
number and increases with increase in Darcy resistance parameter. The rate heat transfer increases with the increase in Darcy 
resistance parameter and increases with the decrease in Hartmann number. 
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