International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Chromatic Prime Number for Circular Embedded Graph of the Tensor Product Graph

Kanneeswari. K ${ }^{1}$, Seshavarthini. K^{2}
${ }^{1}$ Asst.Prof., ${ }^{2}$ M.Phil Scholar, Dept. of Mathematics, Sree Saraswathi Thyagaraja College, Pollachi, India

Abstract

The Chromatic number of tensor product $(G \otimes H)$ of G and H has vertex set $V(G)$ and $V(H)$. In this paper, we introduced chromatic prime number on circular embedded graph of tensor product Keywords: Circular embedded Graph, Chromatic number and Chromatic prime number. P^{+}and P^{-}are positive and negative edge prime numbers.

I. INTRODUCTION

In this paper, we provide few results on chromatic prime number on circular embedded of tensor product graphs for connected, butterfly and pentagon graphs. A graph consists of a set of vertices $V(G)$ and a set of edges $E(G)$. For every vertices $u_{1}, u_{2} V(G)$, the edge connecting u_{1} and u_{2} is denoted by e_{1}. Here, we introduced the chromatic prime number for the circular embedded graph of tensor product. We first prove that $\chi_{\mathrm{p}}(\mathrm{G} \otimes \mathrm{H}) \leq \min \left\{\chi_{\mathrm{p}}(\mathrm{G}), \chi_{\mathrm{p}}(\mathrm{H})\right\}$. An assignment of colors to the vertices of a graph, so that no two adjacent vertices get the same color is called a coloring of the graph. The chromatic number of a graph G is the minimum number of colors needs to color the graph G.

II. PRELIMINARIES

In this section, we introduced the chromatic prime number on tensor product graph with respect to the positive and negative prime number
Definition 1: The Tensor product, $G \otimes H$, of graph G and H is the graph with vertex set $v(G) \times v(H)$ and $(a, x)(b, y) \in E(G \otimes H)$ whenever $a b \in E(G)$ and $x y \in E(H)$.
Definition 2: The chromatic number, $\chi(\mathrm{G})$, of G is the smallest number n for which G has an n -coloring.
Definition 2: The chromatic prime number, $\chi_{p}(G)$, of G is the smallest number n_{p} for which G has an n_{p}-coloring.

III. MAIN RESULTS AND DISCUSSION

A. Theorem 1

Let G and H be the 2-prime colorable connected graph and Butterfly graph respectively, then their product satisfies the circular embedding through the tensor product, that is, $\chi_{p}(G \otimes H) \leq \min \left\{\chi_{p}(G), \chi_{p}(H)\right\}$

B. Proof

Let G be a 2-prime colorable connected graph and butterfly graph with vertices u_{1}, u_{2}, u_{3}, and $v_{1}, v_{2}, \ldots, v_{7}$ respectively.
Let the value of the vertices of graph $G, u_{1}, u_{3}=2$ and $u_{2}=3$. $\left(u_{1}+u_{2}\right)$ and $\left(u_{2}+u_{3}\right)$ are positive prime numbers

$$
\begin{equation*}
\chi(\mathrm{G}) 2=\chi_{\mathrm{p}}(\mathrm{G}) \tag{1}
\end{equation*}
$$

Let the value of the vertices of graph $H, v_{1}, v_{6}, v_{5}=2 ; v_{2}, v_{4}, v_{7}=3$ and $v_{3}=5 .\left(v_{1}+v_{2}\right),\left(v_{1}+v_{3}\right),\left(v_{3}+v_{6}\right),\left(v_{3}+v_{5}\right),\left(v_{4}+v_{5}\right)$ and $($ $\left.\mathrm{v}_{3}-\mathrm{v}_{2}\right),\left(\mathrm{v}_{3}-\mathrm{v}_{4}\right),\left(\mathrm{v}_{3}-\mathrm{v}_{7}\right)$ are positive and negative prime numbers respectively.

$$
\begin{equation*}
\chi(\mathrm{H})=3=\chi_{\mathrm{p}}(\mathrm{H}) \tag{2}
\end{equation*}
$$

Let the tensor product of G and $H, \chi_{p}(G \otimes H)$ which has satisfies the circular embedding. Let us denote, $u_{1} v_{i}, u_{2} v_{i}, u v_{i}$; where $i=$ $1,2, \ldots, 7$.
The tensor product $\chi_{p}(G \otimes H)$, which has prime numbers of vertices on addition and subtraction. We get positive and negative prime numbers.

$$
\begin{equation*}
\chi(\mathrm{H} \otimes \mathbf{G})=2=\chi_{\mathrm{p}}(\mathrm{H} \otimes \mathbf{G}) \tag{3}
\end{equation*}
$$

From (1),(2) and (3), we get

$$
\begin{gathered}
\chi(\mathrm{G} \otimes \mathrm{H}) \leq \min \{\chi(\mathrm{G}), \chi(\mathrm{H})\} \\
\chi_{\mathrm{p}}(\mathrm{G} \otimes \mathrm{H}) \leq \min \left\{\chi_{\mathrm{p}}(\mathrm{G}), \chi_{\mathrm{p}}(\mathrm{H})\right\}
\end{gathered}
$$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Fig. 1

C. Example

1) Theorem 2: Let G and H be the 3-prime colourable complete graph and star graph respectively, then their product satisfies the circular embedding through the tensor product, ie, $\chi_{p}(\mathrm{G} \otimes \mathrm{H}) \leq \min \left\{\chi_{p}(\mathrm{G}), \chi_{p}(\mathrm{H})\right\}$
2) Proof: Let G be a 3-prime colourable complete graph with vertices $\mathrm{u}_{1}, \mathrm{u}_{2}$ and u_{3}. Let H be a star graph with vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$, v_{4} and v_{5}.
Let the value of the vertices of graph G, $u_{1}=2, u_{2}=3$, and $u_{3}=5 .\left(u_{1}+u_{2}\right),\left(u_{1}+u_{3}\right)$ and $\quad\left(u_{3}-u_{2}\right)$ are positive and negative prime numbers respectively.

$$
\begin{equation*}
\chi(\mathrm{G})=3=\chi_{\mathrm{p}}(\mathrm{G}) \tag{1}
\end{equation*}
$$

Let the value of the vertices of graph $H, v_{1}, v_{2}=2 ; v_{3}, v_{4}=3$ and $v_{5}=5 ;\left(v_{1}+v_{3}\right),\left(v_{1}+v_{4}\right),\left(v_{2}+v_{4}\right),\left(v_{2}+v_{5}\right),\left(v_{3}+v_{1}\right)$ and $\left(v_{5}-\right.$ v_{3}) are positive and negative prime numbers respectively.

$$
\begin{equation*}
\chi(\mathrm{H})=3=\chi_{\mathrm{p}}(\mathrm{H}) \tag{2}
\end{equation*}
$$

The tensor product $\chi_{p}(G \otimes H)$, which satisfies the circular embedding; $u_{1} v_{i}, u_{2} v_{i}, u_{3} v_{i}$, where $i=1,2, \ldots, 5$. The tensor product $\chi_{p}(G$ $\otimes \mathrm{H}$), which has prime numbers of vertices on addition and subtraction, we get positive and negative prime numbers.

$$
\begin{equation*}
\chi(\mathrm{G} \otimes \mathrm{H})=3 \text { therefore } \chi_{\mathrm{p}}(\mathrm{G} \otimes \mathrm{H})=3 \tag{3}
\end{equation*}
$$

From (1),(2) and (3), we get

$$
\begin{gathered}
\chi(\mathrm{G} \otimes \mathrm{H}) \leq \min \{\chi(\mathrm{G}), \chi(\mathrm{H})\} \\
\chi_{\mathrm{p}}(\mathrm{G} \otimes \mathrm{H}) \leq \min \left\{\chi_{\mathrm{p}}(\mathrm{G}), \chi_{\mathrm{p}}(\mathrm{H})\right\}
\end{gathered}
$$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

D. Example

Fig. 2

1) Theorem 3: Let G and H be the pentagon graph and 3-prime colourable complete graph respectively, then their product satisfies the circular embedding by the tensor product,
2) Proof: similarly to the above theorem.
3) Theorem 4: Let G and H be Hexagon graph and merge graph respectively, this product satisfies the circular embedding by the tensor product, then does not exit.

Proof: Let G and H be a 2-prime colorable hexagon graph and 3-prime colorable merge graph with vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}, \mathrm{u}_{5}$. and $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{6}$ respectively. Let the value of the vertices of graph $\mathrm{G}, \mathrm{u}_{1}, \mathrm{u}_{3}, \mathrm{u}_{5}=2$ and $\mathrm{u}_{2}, \mathrm{u}_{4}, \mathrm{u}_{6}=3 .\left(\mathrm{u}_{1}+\mathrm{u}_{2}\right),\left(\mathrm{u}_{2}+\mathrm{u}_{3}\right),\left(\mathrm{u}_{3}+\mathrm{u}_{4}\right),\left(\mathrm{u}_{4}+\mathrm{u}_{5}\right)$, $\left(u_{5}+u_{6}\right)$ and $\left(u_{6}+u_{1}\right)$ are positive prime numbers and their

$$
\begin{equation*}
\chi(\mathrm{G})=2 \text { and } \chi_{\mathrm{p}}(\mathrm{G})=2 . \tag{1}
\end{equation*}
$$

Let the value of the vertices of graph $H, v_{1}, v_{3}, v_{6}=2 ; v_{2}, v_{5}=3$ and $v_{4}=5 .\left(v_{1}+v_{4}\right),\left(v_{3}+v_{4}\right),\left(v_{4}+v_{6}\right),\left(v_{5}+v_{6}\right)$ and $\left(v_{4}-v_{2}\right),\left(v_{4}-\right.$ v_{6}) are positive and negative prime numbers respectively.

$$
\begin{equation*}
\chi(\mathrm{H})=3 \text { and their } \chi_{p}(\mathrm{H})=3 \tag{2}
\end{equation*}
$$

Let the tensor product of G and $\mathrm{H}, \chi_{\mathrm{p}}(\mathrm{G} \otimes \mathrm{H})$ which has satisfies the circular embedding.
Let us assign the values, the tensor product of the vertices uivj, where $\mathrm{i}, \mathrm{j}=1,2, \ldots, 6$
The tensor product $\chi_{p}(G \otimes H)$, which has prime number of vertices on addition and subtraction, we get positive and negative prime numbers.

$$
\begin{equation*}
\chi_{p}(\mathrm{G} \otimes \mathrm{H})=3 \text { and } \chi_{p}(\mathrm{G} \otimes \mathrm{H})=3 \tag{3}
\end{equation*}
$$

But $\chi_{\mathrm{p}}(\mathrm{GH})=3$ is not possible by the definition of chromatic prime number.
From (1), (2) and (3) we get

$$
\begin{gathered}
\chi(\mathrm{G} \otimes \mathrm{H}) \leq \min \{\chi(\mathrm{G}), \chi(\mathrm{H})\} \\
\chi_{\mathrm{p}}(\mathrm{G} \otimes \mathrm{H}) \leq \min \left\{\chi_{\mathrm{p}}(\mathrm{G}), \chi_{\mathrm{p}}(\mathrm{H})\right\}
\end{gathered}
$$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)
 IV. CONCLUSION

In this paper, we observed that the circular embedding by the tensor product graph does not possess prime chromatic number for all size and order.

REFERENCES

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North Holland Elsevier (1976), New York.
[2] D. Duffus B. Sands and R.E. Woodrow, On the chromatic number of the product of Graphs, J. Graphs Theory, 9(1985)487-495.
[3] S.Meena and P. Kavitha Prime labelling for some Butterfly related graphs, International Journal of Mathematics Archivs 5(101,2014)
[4] K. Manimekalai and K. Thirusangu Pair sum Labelling of some special graphs, International Journal of computer Application (0975-8887) Volume 69-No.-8, May 2013.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

