International Journal for Research in Applied Science \& Engineering Technology (IJRASET)
 Operations on Hesitant Fuzzy Hypergraph

Dr. A Thamilisai ${ }^{1}$, R Rajeswari ${ }^{2}$
${ }^{1}$ Assistant Professor, Kamaraj College of Engineering, Virudhunagar
${ }^{2}$ Assistant Professor, Department of Mathematics, Fatima College, Madurai.

Abstract

The concept of hypergraphs was extended to fuzzy hypergraph. In this paper, we extend the concepts of fuzzy hypergraphs into that of hesitant fuzzy hypergraphs. Based on the definition of hesitant fuzzy graph, order of the hfhg, size of the hfhg, operations like complement, join, union, intersection, ringsum, cartesian product, composition are defined for hesitant fuzzy graphs. The authors further proposed to apply these operations in clustering techniques.

I. INTRODUCTION

Hypergraph theory, originally developed by C.Berge in 1960, is a generalization of graph theory. The concept of hypergraphs can model more general types of relations than binary relations. The notion of hypergraphs has been extended in fuzzy theory and the concept of fuzzy hypergraphs was proposed by Lee-Kwang and S.M.Chen. The authors have already introduced the concept of Hesitant fuzzy hypergraph. Operations on HFHGs have also been analyzed to a real-life problem with a numerical example.

II. PRELIMINARIES

A. Definition 1.1

Let X be a fixed set, a Hesitant fuzzy set (HFS) on X is in terms of a function that when applied to X returns a subset of $[0,1]$. The HFS is defined by a mathematical symbol:

$$
\mathrm{A}=\left\{\left\langle x, h_{A}(x)\right\rangle / x \in X\right\}
$$

where $\mathrm{h}_{\mathrm{A}}(x)$ is a set of some values in $[0,1]$, denoting the possible membership degrees of the element $x \in X$ to the set A. Xu and Xia (2011b) called $\mathrm{h}=\mathrm{h}_{\mathrm{A}}(x) a$ hesitant fuzzy element (HFE) and Θ the set of all HFEs.
B. Definition 1.2

A Hesitancy Fuzzy Graph is of the form $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, where
$\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}\right\}$ such that $\mu_{1}: \mathrm{V} \rightarrow[0,1], \gamma_{1}: \mathrm{V} \rightarrow[0,1]$ and $\beta_{1}: \mathrm{V} \rightarrow[0,1]$ denote the degree of membership, non-membership and hesitancy of the element $v_{i} \in V$ respectively and $\mu_{1}\left(v_{i}\right)+\gamma_{1}\left(v_{i}\right)+\beta_{1}\left(v_{i}\right)=1$ for every $v_{i} \in V$, where $\beta_{1}\left(v_{i}\right)=1-\left[\mu_{1}\left(v_{i}\right)+\gamma_{1}\left(v_{i}\right)\right]$ and $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$ where $\mu_{2}: \mathrm{V} \times \mathrm{V} \rightarrow[0,1], \gamma_{2}: \mathrm{V} \times \mathrm{V} \rightarrow[0,1]$ and $\beta_{2}: \mathrm{V} \times \mathrm{V} \rightarrow[0,1]$ are such that, $\mu_{2}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{vj}\right) \leq \min \left[\mu_{1}\left(\mathrm{v}_{\mathrm{i}}\right), \mu_{1}\left(\mathrm{v}_{\mathrm{j}}\right)\right]$
$\gamma_{2}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \leq \max \left[\gamma_{1}\left(\mathrm{v}_{\mathrm{i}}\right), \gamma_{1}\left(\mathrm{v}_{\mathrm{j}}\right)\right]$
$\beta_{2}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \leq \min \left[\beta_{1}\left(\mathrm{v}_{\mathrm{i}}\right), \beta_{1}\left(\mathrm{v}_{\mathrm{j}}\right)\right]$
and $0 \leq \mu_{2}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+\gamma_{2}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+\beta_{2}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \leq 1$ for every $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \in \mathrm{E}$.
C. Definition 1.3

1) Hypergraph H is an ordered pair $\mathrm{H}=(\mathrm{V}, \mathrm{E})$ where
a) $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3} \ldots \mathrm{v}_{\mathrm{n}}\right\}$, a finite set of vertices.
b) $\mathrm{E}=\left\{\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3} \ldots \mathrm{E}_{\mathrm{m}}\right\}$, a family of subsets of V .
c) $\mathrm{E}_{\mathrm{j}} \neq \emptyset, \mathrm{j}=1,2, \ldots \mathrm{~m}$ and $\mathrm{UE}_{\mathrm{j}}=\mathrm{V}$.

The set V is called the set of vertices and E is the set of edges (or hyper edges).
D. Definition 1.4

In a hypergraph, two or more vertices $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ are said to be adjacent if there exist an edge Ej which contains those vertices. In a hypergraph two edges Ei \& Ej, $i \neq j$ is said to be adjacent if their intersection is not empty.

E. Definition 1.5

A regular hyper graph is one in which every vertex is contained in k edges for some constant k .

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

F. Definition 1.6

1) Hesitant Fuzzy HyperGraph (HFHG) is an ordered pair $\mathrm{H}=\langle\mathrm{V}$, E$\rangle$ where
a) $\quad \mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3} \ldots \mathrm{v}_{\mathrm{n}}\right\}$, a finite set of vertices
b) $\quad \mathrm{E}=\left\{\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3} \ldots \mathrm{E}_{\mathrm{m}}\right\}$, a family of Hesitant fuzzy subsets of V .
c) $\quad \mathrm{E}_{\mathrm{j}}=\left\{\left\langle\mathrm{v}_{\mathrm{i}}, \mu_{\mathrm{j}}\left(\mathrm{v}_{\mathrm{i}}\right), \gamma_{\mathrm{j}}\left(\mathrm{v}_{\mathrm{i}}\right), \beta_{\mathrm{j}}\left(\mathrm{v}_{\mathrm{i}}\right)>/ \mu_{\mathrm{j}}\left(\mathrm{v}_{\mathrm{i}}\right), \gamma_{\mathrm{j}}\left(\mathrm{v}_{\mathrm{i}}\right), \beta_{\mathrm{j}}\left(\mathrm{v}_{\mathrm{i}}\right) \geq 0\right.\right.$ and $\left.0 \leq \mu_{2}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+\gamma_{2}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+\beta_{2}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \leq 1, \mathrm{j}=1,2, \ldots \mathrm{~m}\right\}$
d) $\quad \mathrm{E}_{\mathrm{j}} \neq \emptyset, \mathrm{j}=1,2, \ldots \mathrm{~m}$

Here the edges E_{j} are HFHGs. $\mu_{\mathrm{j}}\left(\mathrm{v}_{\mathrm{i}}\right), \gamma_{\mathrm{j}}\left(\mathrm{v}_{\mathrm{i}}\right), \beta_{\mathrm{j}}\left(\mathrm{v}_{\mathrm{i}}\right)$ denote the degree of membership, non-membership and hesitancy of the element $\mathrm{v}_{\mathrm{i}} \in \mathrm{V}$ respectively of the vertex v_{i} to edge E_{j}.
G. Definition 1.7

Let $\mathrm{H}=(\mathrm{X}, \mathrm{E})$ be a Regular Hesitant Fuzzy Hypergraph. The order of a Regular Hesitant Fuzzy Hypergraph, H in

$$
\mathrm{O}(\mathrm{H})=\left(\sum_{x \in X} \mu_{E_{i}}(x), \quad \sum_{x \in X} \gamma_{E_{i}}(x), \sum_{x \in X} \beta_{E_{i}}(x)\right) \text { for every } \mathrm{x} \in \mathrm{X}
$$

The size of Regular Hesitant Fuzzy Hypergraph is

$$
\mathrm{S}(\mathrm{H})=\sum_{i=1}^{n} S\left(E_{i}\right) \text { where } S\left(E_{i}\right)=\left(\sum_{x \in E_{i}} \mu_{E_{i}}(x), \quad \sum_{x \in E_{i}} \gamma_{E_{i}}(x), \sum_{x \in E_{i}} \beta_{E_{i}}(x)\right)
$$

1) Example 1: Consider the Hesitant Fuzzy Hypergraph $H=(X, E)$, Define $X=\{a, b, c, d\}$ and $E=\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$, where

$$
\begin{aligned}
& \mathrm{E}_{1}=\{(\mathrm{a}, 0.1,0.7,0.2)(\mathrm{b}, 0.1,0.7,0.2)\} \\
& \mathrm{E}_{2}=\{(\mathrm{b}, 0.1,0.7,0.2)(\mathrm{c}, 0.1,0.7,0.2)\} \\
& \mathrm{E}_{3}=\{(\mathrm{c}, 0.1,0.7,0.2)(\mathrm{d}, 0.1,0.7,0.2)\} \\
& \mathrm{E}_{4}=\{(\mathrm{d}, 0.1,0.7,0.2)(\mathrm{a}, 0.1,0.7,0.2)\}
\end{aligned}
$$

Here, Order of the HFHG, O $(\mathrm{H})=(0.4,2.8,0.8)$,
Size of the HFHG, $S(H)=(0.8,5.6,1.6)$.

III. OPERATIONS ON HESITANT FUZZY HYPERGRAPHS

A. Definition 2.1

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two HFHGs. Then the Union of G_{1} and G_{2} is an HFHG $G=G_{1} \cup G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$ defined by

$$
\begin{gathered}
\left(\mu_{1} \cup \mu_{1}^{\prime}\right)(v)= \begin{cases}\mu_{1}(v) & \text { if } v \in V_{1}-V_{2} \\
\mu_{1}^{\prime}(v) & \text { if } v \in V_{2}-V_{1}\end{cases} \\
\left(\gamma_{1} \cup \gamma_{1}^{\prime}\right)(v)= \begin{cases}\gamma_{1}(v) & \text { if } v \in V_{1}-V_{2} \\
\gamma_{1}^{\prime}(v) & \text { if } v \in V_{2}-V_{1}\end{cases} \\
\left(\beta_{1} \cup \beta_{1}^{\prime}\right)(v)= \begin{cases}\beta_{1}(v) & \text { if } v \in V_{1}-V_{2} \\
\beta_{1}^{\prime}(v) & \text { if } v \in V_{2}-V_{1}\end{cases} \\
\left(\mu_{2} \cup \mu_{2}^{\prime}\right)\left(v_{i} v_{j}\right)= \begin{cases}\mu_{2 i j} & \text { if } e_{i j} \in E_{1}-E_{2} \\
\mu_{2 i j}^{\prime} & \text { if } e_{i j} \in E_{2}-E_{1}\end{cases}
\end{gathered}
$$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

$$
\begin{aligned}
& \left(\gamma_{2} \cup \gamma_{2}^{\prime}\right)\left(v_{i} v_{j}\right)= \begin{cases}\gamma_{2 i j} & \text { if } e_{i j} \in E_{1}-E_{2} \\
\gamma_{2 i j}^{\prime} & \text { if } e_{i j} \in E_{2}-E_{1}\end{cases} \\
& \left(\beta_{2} \cup \beta_{2}^{\prime}\right)\left(v_{i} v_{j}\right)= \begin{cases}\beta_{2 i j} & \text { if } e_{i j} \in E_{1}-E_{2} \\
\beta_{2 i j}^{\prime} & \text { if } e_{i j} \in E_{2}-E_{1}\end{cases}
\end{aligned}
$$

where ($\mu_{1}, \gamma_{l}, \beta_{1}$) and ($\mu_{1}{ }^{\prime}, \gamma_{1}, \beta_{1}{ }^{\prime}$) refer the vertex membership, non-membership and hesitant element of G_{l} and G_{2} respectively; ($\mu_{2}, \gamma_{2}, \beta_{2}$) and ($\mu_{2}{ }^{\prime}, \gamma_{2}{ }^{\prime}, \beta_{2}{ }^{\prime}$) refer the edge membership, non-membership and hesitant element of G_{l} and G_{2} respectively.

1) Example 2: Consider the Hesitant Fuzzy Hypergraphs $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ where $\mathrm{V}_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ where $\mathrm{V}_{2}=\left\{\mathrm{u}_{1}\right.$, u_{2}.

\mathbf{G}_{1}

$\mathbf{G}_{1} \cup \mathbf{G}_{\mathbf{2}}$

B. Definition 2.2

Let $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ be two HFHGs. Then the Join of G_{1} and G_{2} is an HFHG $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}=\left(\mathrm{V}_{1} \cup \mathrm{~V}_{2}, \mathrm{E}_{1} \cup \mathrm{E}_{2} E^{\prime}\right)$ defined by

$$
\begin{array}{ll}
\left(\mu_{1}+\mu_{1}^{\prime}\right)(v)=\left(\mu_{1} \cup \mu_{1}^{\prime}\right)(v) & \text { if } \mathrm{v} \in \mathrm{~V}_{1} \cup \mathrm{~V}_{2} \\
\left(\gamma_{1}+\gamma_{1}^{\prime}\right)(v)=\left(\gamma_{1} \cup \gamma_{1}^{\prime}\right)(v) & \text { if } \mathrm{v} \in \mathrm{~V}_{1} \cup \mathrm{~V}_{2} \\
\left(\beta_{1}+\beta_{1}^{\prime}\right)(v)=\left(\beta_{1} \cup \beta_{1}^{\prime}\right)(v) & \text { if } \mathrm{v} \in \mathrm{~V}_{1} \cup \mathrm{~V}_{2}
\end{array}
$$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

$$
\begin{gathered}
\left(\mu_{1}+\mu_{1}^{\prime}\right)\left(v_{i} v_{j}\right)=\left\{\begin{array}{cc}
\left(\mu_{1}+\mu_{1}^{\prime}\right)\left(v_{i} v_{j}\right) & \text { if } v_{i} v_{j} \in E_{1} \cup E_{2} \\
\mu_{1}\left(v_{i}\right) \mu_{1}\left(v_{j}\right) & \text { if } v_{i} v_{j} \in E^{\prime}
\end{array}\right. \\
\left(\gamma_{1}+\gamma_{1}^{\prime}\right)\left(v_{i} v_{j}\right)=\left\{\begin{array}{ccc}
\left(\gamma_{1}+\gamma_{1}^{\prime}\right)\left(v_{i} v_{j}\right) & \text { if } v_{i} v_{j} \in E_{1} \cup E_{2} \\
\gamma_{1}\left(v_{i}\right) \gamma_{1}^{\prime}\left(v_{j}\right) & \text { if } v_{i} v_{j} \in E^{\prime}
\end{array}\left(\beta_{1}+\beta_{1}^{\prime}\right)\left(v_{i} v_{j}\right)=\left\{\begin{array}{cc}
\left(\beta_{1}+\beta_{1}^{\prime}\right)\left(v_{i} v_{j}\right) & \text { if } v_{i} v_{j} \in E_{1} \cup E_{2} \\
\beta_{1}\left(v_{i}\right) \beta_{1}\left(v_{j}\right) & \text { if } v_{i} v_{j} \in E^{\prime}
\end{array}\right.\right.
\end{gathered}
$$

1) Example 3: Consider the Hesitant Fuzzy Hypergraphs $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ where $\mathrm{V}_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ where $\mathrm{V}_{2}=\left\{\mathrm{u}_{1}\right.$, $\left.\mathrm{u}_{2}\right\}$.

\mathbf{G}_{1}

$\mathbf{G}_{1}+\mathbf{G}_{\mathbf{2}}$

C. Definition 2.3

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two HFHGs. Then the Intersection of HFHGs G_{1} and G_{2}, denoted by $G_{1} I G_{2}$, is an HFHG defined by

$$
\begin{gathered}
\left(\mu_{1} I \mu_{1}^{\prime}\right)(v)= \begin{cases}\mu_{1}(v) & \text { if } v \in V_{1} \text { and } V_{2} \\
\mu_{1}^{\prime}(v) & \text { if } v \in V_{2} \text { and } V_{1}\end{cases} \\
\left(\gamma_{1} I \gamma_{1}^{\prime}\right)(v)= \begin{cases}\gamma_{1}(v) & \text { if } v \in V_{1} \text { and } V_{2} \\
\gamma_{1}^{\prime}(v) & \text { if } v \in V_{2} \text { and } V_{1}\end{cases} \\
\left(\beta_{1} I \beta_{1}^{\prime}\right)(v)= \begin{cases}\beta_{1}(v) & \text { if } v \in V_{1} \text { and } V_{2} \\
\beta_{1}^{\prime}(v) & \text { if } v \in V_{2} \text { and } V_{1}\end{cases} \\
\left(\mu_{2} I \mu_{2}^{\prime}\right)\left(v_{i} v_{j}\right)= \begin{cases}\mu_{2 i j} & \text { if } e_{i j} \in E_{1} \text { and } E_{2} \\
\mu_{2 i j}^{\prime} & \text { if } e_{i j} \in E_{2} \text { and } E_{1}\end{cases}
\end{gathered}
$$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

$$
\begin{aligned}
& \left(\gamma_{2} I \gamma_{2}^{\prime}\right)\left(v_{i} v_{j}\right)= \begin{cases}\gamma_{2 i j} & \text { if } e_{i j} \in E_{1} \text { and } E_{2} \\
\gamma_{2 i j}^{\prime} & \text { if } e_{i j} \in E_{2} \text { and } E_{1}\end{cases} \\
& \left(\beta_{2} I \beta_{2}^{\prime}\right)\left(v_{i} v_{j}\right)= \begin{cases}\beta_{2 i j} & \text { if } e_{i j} \in E_{1} \text { and } E_{2} \\
\beta_{2 i j}^{\prime} & \text { if } e_{i j} \in E_{2} \text { and } E_{1}\end{cases}
\end{aligned}
$$

1) Example 4:

$$
\mathbf{G}_{1} \mathbf{I} G_{2}
$$

D. Definition 2.4

Let $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ be two HFHGs. Then the ringsum of HFHGs G_{1} and G_{2} is an HFHG defined by $\mathrm{G}_{1} \oplus \mathrm{G}_{2}=\left(\mathrm{G}_{1} \mathrm{U} \mathrm{G}_{2}\right)-\left(\mathrm{G}_{1} \mathrm{I} \mathrm{G}_{2}\right)$.

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

E. Definition 2.5

Let $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ be two HFHGs. Then the Cartesian product of HFHGs G_{1} and G_{2} is an HFHG, denoted by $\mathrm{G}=$ $\mathrm{G}_{1} \times \mathrm{XG}_{2}$, defined by $\mathrm{G}=\left(\mathrm{V}, \mathrm{E}^{\prime \prime}\right) \mathrm{V}=\mathrm{V}_{1} \mathrm{XV}_{2}$ and
$\mathrm{E}^{\prime \prime}=\left\{\left(\mathrm{u}, \mathrm{u}_{2}\right)\left(\mathrm{u}, \mathrm{v}_{2}\right): \mathrm{u} \in \mathrm{V}_{1}, \mathrm{u}_{2} \mathrm{v}_{2} \in \mathrm{E}_{2}\right\} \mathrm{U}\left\{\left(\mathrm{u}_{1}, \mathrm{w}\right)\left(\mathrm{v}_{1}, \mathrm{w}\right): \mathrm{we}_{2}, \mathrm{u}_{1} \mathrm{v}_{1} \in \mathrm{E}_{1}\right\}$
where
(i)
$\left(\mu_{1} \times \mu_{1}^{\prime}\right)\left(\mathbf{u}_{1}, u_{2}\right)=\mu_{1}\left(u_{1}\right) \cdot \mu_{1}^{\prime}\left(u_{2}\right)$ for every $\left(u_{1}, \mathbf{u}_{2}\right) \in \mathrm{V}$
$\left(\gamma_{1} \times \gamma_{1}\right)\left(\mathbf{u}_{1}, u_{2}\right)=\gamma_{1}\left(u_{1}\right) \cdot \gamma_{1}^{\prime}\left(u_{2}\right)$ for every $\left(u_{1}, u_{2}\right) \in \mathrm{V}$ and
$\left(\beta_{1} \times \beta_{1}^{\prime}\right)\left(u_{1}, u_{2}\right)=\beta_{1}\left(u_{1}\right) \cdot \beta_{1}\left(u_{2}\right)$ for every $\left(u_{1}, u_{2}\right) \in V$
(ii)
$\left(\mu_{2} \mathrm{x} \mu_{2}{ }^{\prime}\right)\left(u, u_{2}\right)\left(u, v_{2}\right)=\mu_{1}(u) . \mu_{2}\left(u_{2} v_{2}\right)$ for every $u \in V_{1}, u_{2} v_{2} \in E_{2}$
$\left(\gamma_{2} \times \gamma_{2}{ }^{\prime}\right)\left(u, u_{2}\right)\left(u, v_{2}\right)=\gamma_{1}(u) \cdot \gamma_{2}\left(u_{2} v_{2}\right)$ for every $u \in V_{1}, u_{2} v_{2} \in E_{2}$
$\left(\beta_{2} \times \beta_{2}{ }^{\prime}\right)\left(u_{u} u_{2}\right)\left(u, v_{2}\right)=\beta_{1}(u) \cdot \beta_{2}\left(u_{2} v_{2}\right)$ for every $u \in V_{1}, u_{2} v_{2} \in E_{2}$ and
$\left(\mu_{2} \mathrm{x} \mu_{2}{ }^{\prime}\right)\left(\mathrm{u}_{1}, \mathrm{w}\right)\left(\mathrm{v}_{1}, \mathrm{w}\right)=\mu_{1}(\mathrm{w}) . \mu_{2}\left(u_{1} \mathrm{v}_{1}\right)$ for every $\mathrm{w} \in \mathrm{V}_{2}, \mathrm{u}_{1} \mathrm{v}_{1} \in \mathrm{E}_{1}$
$\left(\gamma_{2} \mathrm{x} \gamma_{2}{ }^{\prime}\right)\left(\mathrm{u}_{1}, \mathrm{w}\right)\left(\mathrm{v}_{1}, \mathrm{w}\right)=\gamma_{1}(\mathrm{w}) \cdot \gamma_{2}\left(\mathrm{u}_{1} \mathrm{v}_{1}\right)$ for every $\mathrm{w} \in \mathrm{V}_{2}, \mathrm{u}_{1} \mathrm{v}_{1} \in \mathrm{E}_{1}$
$\left(\beta_{2} \times \beta_{2}^{\prime}\right)\left(u_{1}, w\right)\left(v_{1}, w\right)=\beta_{1}(w) \cdot \beta_{2}\left(u_{1} v_{1}\right)$ for every $w \in V_{2}, u_{1} v_{1} \in E_{1}$

1) Example 5:

F. Definition 2.6

Let $G=G_{1} o G_{2}=\left(V_{1} \times V_{2}\right.$, E) be the Composition of two graphs G_{1} and G_{2} where $V=V_{1} \times V_{2}$ and $E=\left\{\left(u, u_{2}\right)\left(u, v_{2}\right): u \in V_{1}, u_{2} v_{2} \in E_{2}\right\} U\left\{\left(u_{1}, w\right)\left(v_{1}, w\right): w \in V_{2}, u_{1} v_{1} \in E_{1}\right\}$

$$
\mathrm{U}\left\{\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right): \mathrm{u}_{1} \mathrm{v}_{1} \in \mathrm{E}_{1}, \mathrm{u}_{2} \neq \mathrm{v}_{2}\right\}
$$

Then, the "Composition of HFHGs G_{1} and G_{2} ", denoted by $\mathrm{G}=\mathrm{G}_{1} \mathrm{O} \mathrm{G}_{2}$, is an HFHG defined by (i)
$\left(\mu_{1}\right.$ o $\left.\mu_{1}\right)\left(u_{1}, u_{2}\right)=\mu_{1}\left(u_{1}\right) \cdot \mu_{1}^{\prime}\left(u_{2}\right)$ for every $\left(u_{1}, u_{2}\right) \in V_{1} \mathrm{xV}_{2}$ $\left(\gamma_{1} \mathrm{o} \gamma_{1}^{\prime}\right)\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\gamma_{1}\left(\mathrm{u}_{1}\right) \cdot \gamma_{1}^{\prime}\left(\mathrm{u}_{2}\right)$ for every $\left(\mathrm{u}_{1}, \mathbf{u}_{2}\right) \in \mathrm{V}_{1} \mathrm{xV}_{2}$ and

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

$\left(\beta_{1}\right.$ o $\left.\beta_{1}{ }^{\prime}\right)\left(u_{1}, u_{2}\right)=\beta_{1}\left(u_{1}\right) \cdot \beta_{1}{ }^{\prime}\left(u_{2}\right)$ for every $\left(u_{1}, u_{2}\right) \in V_{1} x V_{2}$
(ii)
$\left(\mu_{2} \mathrm{o} \mu_{2}{ }^{\prime}\right)\left(\mathrm{u}, \mathrm{u}_{2}\right)\left(\mathrm{u}, \mathrm{v}_{2}\right)=\mu_{1}(\mathrm{u}) . \mu_{2}\left(\mathrm{u}_{2} \mathrm{v}_{2}\right)$ for every $\mathrm{u} \in \mathrm{V}_{1}, \mathrm{u}_{2} \mathrm{v}_{2} \in \mathrm{E}_{2}$
$\left(\gamma_{2} \mathrm{o} \gamma_{2}{ }^{\prime}\right)\left(u, u_{2}\right)\left(u, v_{2}\right)=\gamma_{1}(u) \cdot \gamma_{2}\left(u_{2} v_{2}\right)$ for every $u \in V_{1}, u_{2} v_{2} \in E_{2}$
$\left(\beta_{2} \mathrm{o} \beta_{2}{ }^{\prime}\right)\left(u, u_{2}\right)\left(u, v_{2}\right)=\beta_{1}(u) . \beta_{2}\left(u_{2} v_{2}\right)$ for every $u \in V_{1}, u_{2} v_{2} \in E_{2}$
$\left(\mu_{2} \mathrm{o} \mu_{2}{ }^{\prime}\right)\left(\mathrm{u}_{1}, \mathrm{w}\right)\left(\mathrm{v}_{1}, \mathrm{w}\right)=\mu_{1}(\mathrm{w}) . \mu_{2}\left(\mathrm{u}_{1} \mathrm{v}_{1}\right)$ for every $\mathrm{w} \epsilon \mathrm{V}_{2}, \mathrm{u}_{1} \mathrm{v}_{1} \in \mathrm{E}_{1}$
$\left(\gamma_{2} o \gamma_{2}\right)\left(u_{1}, w\right)\left(v_{1}, w\right)=\gamma_{1}(w) \cdot \gamma_{2}\left(u_{1} v_{1}\right)$ for every $w \in V_{2}, u_{1} v_{1} \in E_{1}$
$\left(\beta_{2} o \beta_{2}{ }^{\prime}\right)\left(u_{1}, w\right)\left(v_{1}, w\right)=\beta_{1}(w) . \beta_{2}\left(u_{1} v_{1}\right)$ for every $w \in V_{2}, u_{1} v_{1} \in E_{1}$ and
$\left(\mu_{2} \mathrm{o} \mu_{2}{ }^{\prime}\right)\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)=\mu_{1}{ }^{\prime}\left(\mathrm{u}_{2}\right) \cdot \mu_{1}{ }^{\prime}\left(\mathrm{v}_{2}\right) \cdot \mu_{2}\left(\mathrm{u}_{1} \mathrm{v}_{1}\right)$ for every $\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right),\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in \mathrm{E}-\mathrm{E}^{\prime \prime}$
$\left(\gamma_{2}\right.$ o $\left.\gamma_{2}{ }^{\prime}\right)\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)=\gamma_{1}{ }^{\prime}\left(u_{2}\right) \cdot \gamma_{1}{ }^{\prime}\left(v_{2}\right) \cdot \gamma_{2}\left(u_{1} v_{1}\right)$ for every $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in E-E^{\prime \prime}$
$\left(\beta_{2} \circ \beta_{2}{ }^{\prime}\right)\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)=\beta_{1}{ }^{\prime}\left(u_{2}\right) \cdot \beta_{1}{ }^{\prime}\left(v_{2}\right) \cdot \beta_{2}\left(u_{1} v_{1}\right)$ for every $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in E-E^{\prime \prime}$
where
$\mathrm{E}^{\prime \prime}=\left\{\left(\mathrm{u}, \mathrm{u}_{2}\right)\left(\mathrm{u}, \mathrm{v}_{2}\right): \mathrm{u} \in \mathrm{V}_{1}, \mathrm{u}_{2} \mathrm{v}_{2} \in \mathrm{E}_{2}\right\} \mathrm{U}\left\{\left(\mathrm{u}_{1}, \mathrm{w}\right)\left(\mathrm{v}_{1}, \mathrm{w}\right): \mathrm{w} \in \mathrm{V}_{2}, \mathrm{u}_{1} \mathrm{v}_{1} \in \mathrm{E}_{1}\right\}$

1) Example 6:

IV. CONCLUSION

In this paper, order of the HFHG, size of the HFHG, Operations like complement, join, union, intersection, ringsum, Cartesian product, composition on HFHGs are defined. Currently, the authors are working on existing clustering techniques. Further, it is proposed to apply the properties of HFHGs to develop a new clustering algorithm and the same may be checked with a numerical dataset.

REFERENCES

[1] Z. Xu, Hesitant Fuzzy Sets Theory, Studies in Fuzziness and Soft Computing 314, 1 DOI: 10.1007/978-3-319-04711-9_1, © Springer International Publishing Switzerland 2014.
[2] Mordes on N. John, N a ir S. Premchand. Fuzzy Graphs and Fuzzy Hypergraphs,New York, Physica-Verlag, 2000, ISBN 3-7908-1286-2.
[3] T. Pathinathan, J. Jon Arockiaraj and J. Jesintha Rosline, Hesitancy Fuzzy Graphs, Vol 8(35), DOI: 10.17485/ijst/2015/v8i35/86672, December 2015, Indian Journal of Science and Technology, ISSN (Print) : 0974-6846.
[4] R.Parvathi, M.G.Karunambigai and K.T.Atanassov, Operations on Intuitionistic fuzzy graphs, Fuzzy Systems, 2009, Fuzz-IEEE 2009. IEEE international conference 1396-1401.
[5] S.Thilagavathi, R.Parvathi and M.G.Karunambigai, Intuitionistic fuzzy hypergraphs, J.Cybernetics and Information Technologies 9(2), (2009), 46-53, Sofia.
[6] I.Pradeepa and S.Vimala, Regular and Totally Regular Intuitionistic Fuzzy Hypergraph(IFH), Volume 4, Issue 1-C (2016), 137-142, Indian Journal of Mathematics And its Applications, ISSN (Print) : 2347-1557.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

