

1 III October 2013

www.ijraset.com Vol. 1 Issue III, October 2013
ISSN: 2321-9653INTERNAT IONAL JOURNAL FOR RESEARCH IN APPL IED SC IENCE ANDENGINEER ING TECHNOLOGY (I JRASET)

Page 22

PerformanceAnalysis of Sobel Edge Detection
Filter on GPU using CUDA & OpenGL

Ms. Khyati Shah

Assistant Professor, Computer Engineering Department
VIER-kotambi, INDIA khyati30@gmail.com

Abstract: CUDA(Compute Unified Device Architecture) is a novel technology of general-purpose computing on the GPU, which
makes users develop general GPU (Graphics Processing Unit)programs easily . GPUs are emerging as platform of choice for Parallel
High Performance Computing. GPUs are good at data intensive parallel processing with availability of software development
platforms such as CUDA (developed by Nvidia for its Geforce series GPUs).Basic goal of CUDA is to help pro- grammars focus on
the task of parallelization of the algorithms rather than spending time on their implementation. It supports the Heterogeneous
computation where applications use both the CPU and GPU. In this paper we propose the implementation of sobel edge detection filter
on GeForce GT 130 on MAC OS using CUDA and OpenGL .We reduces the Global Memory using kernel function. Also compare their
results and performance to the previous implementation and it gives the more optimized results.

Keywords: CUDA, GPU, Image Processing, OpenGL, PBO, Sobel, VBO

INTRODUCTION
CUDA (Compute Unified Device Architecture) is a
new architecture for issuing and managing
computations on the GPU [1]. Nvidia GPU is
available for GeForce Series, Quadra Series and
Tesla brands. CUDA architecture supports a range of
computational interfaces including OpenCL (Open
Computing Language) and DirectX Compute. CUDA
brings the C-like development environment to
programmers for the first time, which uses a C
compiler to compile programs, and replaces the
shader languages with C language and some CUDA
extended libraries. Users needn’t map programs into
graphics APIs anymore, so GPGPU program
development becomes more flexible and efficient.
More than one hundred processors resided in CUDA
graphics card schedules hundreds of threads to run
concurrently, resolving complex computing
problems [2].

OpenGL is a software interface to graphics
hardware. It is designed as a hardware-independent
interface to be used for many different hardware
platforms. OpenGL uses the prefix gl for core
OpenGL commands and glu for commands in
OpenGL Utility Library. Similarly, OpenGL
constants begin with GL and use all capital letters.
OpenGL also uses suffix to specify the number of
arguments and data type passed to a OpenGL call.

CUDA and OpenGL by utilizing a PBO (Pixel Buffer
Object) to create images with CUDA on a pixel-by-
pixel basis and display them using OpenGL. CUDA
to generate 3D meshes and utilize OpenGL VBOs
(Vertex Buffer Objects) to efficiently render meshes
as a colored surface, wire frame image or set of 3D

points. To focus on CUDA rather than OpenGL, we
have used an OpenGL framework that can mix
CUDA with both pixel and vertex buffer objects.

Fig. 1. Image Processing with CUDA and OpenGL

Image processing fits naturally for data parallel
processing. Pixels can be mapped directly to threads
and lots of data are shared between pixels [3]. In
fig.1 displays the process of various image
processing algorithms on GPU using CUDA and
OpenGL.

USING PIXEL BUFFER OBJECTS WITH CUDA AND
OPENGL FROM WINDOW CREATION TO CUDA
BUFFER REGISTRATION

www.ijraset.com Vol. 1 Issue III, October 2013
ISSN: 2321-9653INTERNAT IONAL JOURNAL FOR RESEARCH IN APPL IED SC IENCE ANDENGINEER ING TECHNOLOGY (I JRASET)

Page 23

Before mapping the OpenGL buffer to CUDA, the following
steps must be taken:

1) Create a window (OS specific).
2) Create a GL context (also OS specific).
3) Set up the GL view port and coordinate system.
4) Generate one or more GL buffers to be shared with

CUDA.
5) Register these buffers with CUDA.

fig.2 illustrates these steps.

Fig. 2. CUDA Buffer Registration

USING PIXEL BUFFER OBJECTS WITH CUDA
AND OPENGL FINAL STEPS TO RENDER AN
IMAGE FROM A CUDA APPLICATION

To draw an image from a CUDA application requires the
following steps:

1) Allocate OpenGL buffer(s) that are the size of the image.
2) Allocate OpenGL texture(s) that are the size of the

image.
3) Map OpenGL buffer(s) to CUDA memory.
4) Write the image from CUDA to the mapped OpenGL
buffer(s).
5) Unmap the OpenGL buffer(s).
6) Bind the texture to the OpenGL buffer [4].
7) Draw a Quad that specifies the texture coordinates at

each corner.
8) Swap front and back buffers to draw to the display.

In this application, createPBO() allocates the OpenGL
PBO buffer(s) with glBufferData(), thereby fulfilling step 1.
Similarly, createTexture() allocates the OpenGL texture(s)
specified in step 2 that can be used for rendering the image to
the display. The routine display() calls the CUDA kernel that
creates or modifies the data in the OpenGL buffer, then renders
the new image to the screen as in fig.3.

Fig. 3. Render an image from
CUDA Application

IMAGE PROCESSING APPLICATION WITH
CUDA

We implemented an image processing application to
demonstrate the benefits of CUDA, to be more familiar with
GPGPU

and create a CUDA kernel to achieve more speedup. So we
implemented Sobel Edge Detection Filter.

A. Sobel Edge Detection Filter

SOBEL operator is a discrete differential operator, computing
an approximation of the gradient of the image intensity function.

It is used for edge detection, filtering each pixel with a 3×3
kernel. Matrix operations calculate derivations of vertical and
Horizontal changes [5].

ALGORITHM:
Sobel edge detection filter uses the two 3X3 templates
to calculate the gradient value. The actual Sobel masks
are shown below:

www.ijraset.com Vol. 1 Issue III, October 2013
ISSN: 2321-9653INTERNAT IONAL JOURNAL FOR RESEARCH IN APPL IED SC IENCE ANDENGINEER ING TECHNOLOGY (I JRASET)

Page 24

Fig. 4. Sobel Mask

Here in this fig.4 displays two-dimensional convolution
mask.”Gx” is horizontal; ”Gy” is vertical operation [6].These
operations then combined as for gradient magnitude as
shown in Equation 1 and for gradient direction as shown in
Equation 2.

Now, consider the following 3×3 image window.

where:
a1 .. a8 are the grey levels of each pixel in the filter
window.

X = −1 × a1 + 1 × a3 − 2 × a4 + 2 × a6 − 1 × a7 + 1 × a9
(3)
Y = 1 × a1 + 2 × a2 + 1 × a3 − 1 × a7 − 2 × a8 − 1 × a9
(4)

Sobel gradient =

Algo:

for R G an B components each . for(R G and B
components) {

if (pixel is not one of the edge pixel) {

a1 = -1 × a1 + 1 × a3 - 2 × a4 + 2 × a6 - 1 × a7 + 1 ×
a9;

a2 = 1 × a1 + 2 × a2 + 1 × a3 - 1 × a7 - 2 × a8 - 1 ×
a9;

sourcePixel = abs(a1) +abs(a2) }

}

Sobel edge detection filter can be broken down
into the following steps:

Fig. 5. Sobelfilter steps

First we need to set up the image data objects
which will store the intermediate and final results,
these will all be the size of the input Image [7].
There are a number of different ways to convert a
color image to greyscale. But in this Program we
have to first convert image in to PPM(Portable
Pixel Map) and PGM (Portable Gray Map) format.
Next ,do the Computation Using Sobel Operators
and do the Sum of the Sobel Operators to create
and Edge Image.

Procedure for create an Edge image

For Developing the Sobel Edge Detection Filter we need
Graphics library (OpenGL). Various steps should be follow
for this filter program.
1) First initialize OpenGL context, so we can properly set the
GL for CUDA. This is necessary in order to achieve optimal
performance with OpenGL/CUDA interop.
2) Use command-line specified CUDA device, otherwise use
device with highest Gflops/s.
3) Kernel launch configuration.
4) Allocate Host/Device Memory.
5) Allocate and initialize an array of stream handles.
6) Create CUDA event handles.
7) Measure the time for kernel and memory copy from device.
8) Measure the time for non-streamed and streamed execution
for reference. (Here asynchronously launch n streams kernels,
each operating on its own portion of data)
9) Release Resources.
10) Display the various functions.
11) Free Allocated memory
12) CUDA Thread Exit

www.ijraset.com Vol. 1 Issue III, October 2013
ISSN: 2321-9653INTERNAT IONAL JOURNAL FOR RESEARCH IN APPL IED SC IENCE ANDENGINEER ING TECHNOLOGY (I JRASET)

Page 25

Fig. 6. Sobel Edge Detection Procedure

B. Experimental Results

Input Image: Saturn.pgm

1.Original Image (Press Key (I)) shown in fig.7.

In original Image 188 FPS(Frames Per Second) is
computed.

First shared memory image shown in fig.8a, sobel edge
detection computed with texture memory and number
of frames are 237. Second image is shown in fig.8b,
sobel edge detection computed with texture and shared
memory & no of frame count is 248.

In fig.9a and fig.9b, display the more and less
brightness of the image.

C. Result Analysis

Global memory is the basic problem of sobel filter.
There are number of uncoalesced memory detect in this
filter. So we need to optimize the filter for more
speedup and less amount of uncoalesced memory.

Fig. 7. Original Filter

Fig. 8. Shared and Shared +
Texture Image

TABLE I

Sobel Edge Detection Filter Analysis is:

Input
Image

GPU
Processing

Time(ms)

CPU
Processing

Time(ms)

Speedu
p

Uncoalesc
ed

Memory
128×128 45.13 301.77 6.6 2940928
256×256 215.27 578.22 2.6 16318464
512×512 302.71 574.72 1.9 0
1024×102
4

2942.23 2993.46 1.01 14260633
6

Fig. 10. Speedup of Sobel Edge Detection Filter
Analysis

www.ijraset.com Vol. 1 Issue III, October 2013
ISSN: 2321-9653INTERNAT IONAL JOURNAL FOR RESEARCH IN APPL IED SC IENCE ANDENGINEER ING TECHNOLOGY (I JRASET)

Page 26

Original Sobel filter 512×512 input images we can
get 578945024 uncoalesced memories and speedup is
1x. So we need to optimize this filter. After applying
the kernel function using streams (Asynchronous calls)
we can get more speedup and less uncoalesced memory
used compare to original sobel filter for input Image
512×512. In this kernel function we have used 256
threads and 16 thread blocks.

In this speedup graph shown in fig.10 we can see that
if input image size increases, speedup continuously
decreased. Because it has some global memory
limitations of GPU device. So here the results are
measured for various input images and 512×512 image
we can get zero (or less) uncoalesced memory.

CONCLUSION & FUTURE WORK

It is observed that NVIDIA graphics processing units
to solve many complex computational problems in a
fraction of the time required on a CPU. In sobel edge
detection filter using CUDA and OpenGL displays
optimal results. It counts the less number of
uncoalesced memory. The capability to achieve faster
speed depends upon parallelism in the program for
utilizing the high no of cores for processing user
friendly interfaces need to be developed so that such
programmes can be developed with less efforts.

ACKNOWLEDGMENT

I would like to thank of god, my parents and friends for
all their supports, which helped me reach where I am
today. I am extremely thankful to all who have directly
or indirectly helped me for the completion of my work.
Sincere Regards to Nirma University for initiating the
project.

REFERENCES

[1] Nvidia CUDA: A New Architecture for Computing on the
GPU
[2] Z. Yang , Y. Zhu and Y. Pu ”Parallel Image
Processing Based on CUDA”, Dept.Computer of
Northwestern Polytechnical University Xian, Shaanxi, China
zhuyating02@163.com
[3] F. L. M. B. S. M. Sidi Ahmed MahMoudi, Pierre
Manneback,”Parallel image processing on gpu with cuda and
opengl,” Computer Science Dept
, faculty of Engineering , University of Mons.
[4] http://www.drdobbs.com/architecture-and-
design/222600097
[5] Z.SAKA and M. KORKMAZ, ”Employing a general
purpose gpu for improving the performance of cfd
calculations,” tech. rep.
[6] http://www.pages.drexel.edu/
[7] http://lukewalsh.co.uk/blog/2008/06/sobel-edge-
detection-in-flash. html
[8] D. C. Clarissa Tacchella,Nvidia cuda compute unified
device architec- ture,”no. matr - 707827 , 708250.
[9] B. R. Neha Patil, ”Fast and parallel implementation of
image processing algorithm using cuda technology on gpu
hardware,” tech. rep., Depart- ment of Electrical &
Computer and Systems Engineering, Rensselaer Polytechnic
Institute, Troy, NY 12180-3590.

