

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 5 Issue: V Month of publication: May 2017 DOI:

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

Pre-Encoded Multipliers Based on Non-Redundant Radix-4 Signed-Digit Encoding

Shrish Managuli^{1,} Prof. N. M. Wagdharikar²

^{1, 2} VLSI & Embedded systems, M.E. E&TC Dept. STE's SKNCOE, Vadgaon Pune, India

Abstract: We present architecture of pre-encoded multipliers for Digital Signal Processing applications based on off-line encoding of coefficients.

The Non-Redundant radix-4 Signed-Digit (NR4SD) encoding technique employs the digit values $\{-1,0,+1,+2\}$ or $\{-2,-1,0,+1\}$. It is effective in designing a multiplier with less complex partial products implementation. Extensive experimental analysis proves that the proposed pre-encoded NR4SD multipliers, including the coefficients memory, are more area and power efficient than the conventional Modified Booth scheme.

Keywords: modified booth scheme, Non redundunt radix-4 signed digit encoding (NR4SD), partial products, encoding.

I. INTRODUCTION

In today's modern wireless communication systems the received signal strength greatly varies. Digital multiplication is mostly included in all of today's DSP processors as it is very common operation and frequently occurring function in all algorithms. Fig. 1 shows The proposed NR4SD encoding scheme uses one of the following sets of digit values: $\{-1,0,+1,+2\}$ or $\{-2,-1,0,+1\}$. In order to cover the dynamic range of the 2's complement form, all digits of the proposed representation are encoded according to NR4SD except the most significant one that is MB encoded. Using the proposed encoding formula, we pre-encode the standard coefficients and store them into a ROM in a condensed form (i.e., 2 bits per digit). Compared to the pre-encoded MB multiplier in which the encoded coefficients need 3 bits per digit, the proposed NR4SD scheme reduces the memory size. Also, compared to the MB form, which uses five digit values $\{-1,0,+1,+2\}$ or $\{-2,-1,0,+1\}$, the proposed NR4SD encoding uses four digit values.

Fig. 1. A System Architecture of the NR4SD Multipliers.

Thus, the NR4SD-based pre-encoded multipliers include a less complex partial products generation circuit. We explore the efficiency of the aforementioned pre-encoded multipliers taking into account the size of the coefficients'ROM.

II. LITERATURE REVIEW

We have studied various papers to "pre encoded multipliers". In "Rom-based logic (rbl)design: A low-power 16 bit multiplier," by B. Paul, S. Fujita, published in IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 2935–2942, Nov.2009[1] says that The design uses sixteen 4 times 4 ROM-based multiplier blocks followed by carry-save adders and a final carry-select adder (all ROM-based) to obtain the 32 bit output.

In "High-performance fir filter design based on sharing multiplication," by J. Park, K. Muhammad published in IEEE Transaction Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 2, pp. 244–253, Apr.2003[2] says that main idea is to represent the multiplication in FIR filtering operation as a combination of add and shift operations over the common computation results. The

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

common computations are identified by decomposing the coefficients of FIR filters.

III. DESIGN OF PRE-ENCODED MULTIPLIER

In the proposed system we reduce delay by involving efficient NR4SD algorithms along with carry skip adder technique.

A. Non-redundant radix-4 signed digit algorithm

In this section, we propose pre encoded multiplier algorithms. As in modified booth, the partial products are reduced to half. When encoding the 2's complement number *B*, digits $b^{NR_j^-}$ take one of four values: $\{-2, -1, 0, +1\}$ or $b^{NR_j^+} \in \{-1, 0, +1, +2\}$ at the NR4SD- or NR4SD+ algorithm, respectively. Only four different values are used and not five as in MB algorithm, which leads to $0 \le j \le k - 2$. As we need to cover the dynamic range of the 2's complement form, the most significant digit is MB encoded (i.e., $b^{MB_{k-1}} \in \{-2, -1, 0, +1, +2\}$). The NR4SD- and NR4SD+ encoding algorithms are illustrated in detail in Fig. 2and 3, respectively.

Fig. 3.Block Diagram of the NR4SD+ Encoding Scheme at the Digit

NR4SD- Algorithm

Step 1: Consider the initial values j = 0 and c0=0.

Step 2: Calculate the sum n+2j and carry c2j+1 of a Half Adder (HA) with inputs b2j and c2j Fig. 2. c2j+1 = b2j \land c2j, n+ 2j = b2j \bigoplus c2j.

Step 3: Calculate the positively signed carry c2j+2 (+) and the negatively signed sum n-2j+1 (-) of a Half Adder* (HA*) with inputs b2j+1 (+) and c2j+1 (+) (Fig. 3). The outputs c2j+2 and n-2j+1 of the HA* relate to its inputs as follows: 2c2j+2-n-2j+1 = b2j+1 + c2j+1.

Step 4: Calculate the value of the b^{NR_j} digit.

$$b^{NR^{-}}{}_{j} = -2n - 2j + 1 + n + 2j. \tag{1}$$

Step 5: j := j + 1.

Step 6: If (j < k-1), go to Step 2. If (j = k-1), encode the most significant digit through the MB algorithm and looking upon the three

Volume 5 Issue V, May 2017 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

consecutive bits to be b_{2k-1} , b_{2k-2} and c_{2k-2} . If (j = k), stop. Table 1 shows how the NR4SD- digits are formed.

2's c	ompl	ement	NR4S	D- for	т	Digit	NR4SD- Encoding			
b_{2j+1}	b_{2j}	c_{2j}	c_{2j+2}	n_{2j+1}	n_{2j}^+	\mathbf{b}_{j}^{NR-}	one_j^+	$one_{\overline{j}}$	$two_{\overline{j}}$	
0	0	0	0	0	0	0	0	0	0	
0	0	1	0	0	1	+1	1	0	0	
0	1	0	0	0	1	+1	1	0	0	
0	1	1	1	1	0	-2	0	0	1	
1	0	0	1	1	0	-2	0	0	1	
1	0	1	1	1	1	-1	0	1	0	
1	1	0	1	1	1	-1	0	1	0	
1	1	1	1	0	0	0	0	0	0	

Table 1:NR4SD- Encoding

NR4SD+ Algorithm

Step 1: Consider the initial values j = 0 and c0=0.

Step 2: Calculate the carry positively signed c_{2j+1} (+) and the negatively signed sum n-2j (-) of a HA* with inputs b_{2j} (+) and c_{2j} (+) (Fig. 3). The carry c_{2j+1} and the sum n-2j

2j of the HA* relate to its inputs as follows: 2c2j+1 - n-2j = b2j + c2j.

The outputs of the HA* are analyzed at gate level in the following equations: $c_{2j+1} = b_{2j} \lor c_{2j}$, $n-2j = b_{2j} \oplus c_{2j}$.

Step 3: Calculate the carry c2j+2 and the sum n+2j+1 of a HA with inputs b2j+1 and $c2j+1.c2j+2 = b2j+1 \land c2j+1, n+2j+1 = b2j+1 \oplus c2j+1$.

(2)

Step 4: Calculate the value of the bNR j + digit. bNR + j = 2n + 2j + 1 - n - 2j.

Equation (2) results from the fact that n+2j+1 is positively signed and n-2j is negatively signed.

Step 5: j := j + 1.

Step 6: If (j < k-1), go to Step 2. If (j = k-1), offline encode MSB digit and considering the three consecutive bits to be b2k-1, b2k-2 and c2k-2. If (j = k), stop. Table 2 shows how the NR4SD+ digits are formed.

2's complement			NR4S	D ⁺ for	m	Digit NR4SD+			ncoding
b_{2j+1}	b_{2j}	c_{2j}	c_{2j+2}	n_{2j+1}^{+}	n_{2j}	\mathbf{b}_{j}^{NR+}	one_j^+	$one_{\overline{j}}$	two_j^+
0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	1	+1	1	0	0
0	1	0	0	1	1	+1	1	0	0
0	1	1	0	1	0	+2	0	0	1
1	0	0	0	1	0	+2	0	0	1
1	0	1	1	0	1	-1	0	1	0
1	1	0	1	0	1	-1	0	1	0
1	1	1	1	0	0	0	0	0	0

Table 2: NR4SD+ Encoding

Fig.4.(a) NR4SD- and (b) NR4SD+ Encoding

Compared to the pre-encoded MB multiplier, where the MB encoding blocks are omitted, the pre-encoded NR4SD multipliers need extra hardware to generate the signals for the NR4SD- and NR4SD+ form, respectively. The Fig.5 shows the logical diagram of the PPG unit.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

Fig.5.Generation of the ith Bit p_{j,i} of PP_j

	合目的展	X1 PX []		Simulate •									
Hemager							(b)	,					
	483 51121686		(12) (12)	202 201511921	400 00140520	481 87725880	492	61122666		51508940	31201120	520742	500
product reveal pos	\$1034263		MOTTINE	3125-9822	52106410	50546819	2004130	6109-263		A16/1165	31313144	53827495	10004008
		2023							Diabites		00000		
N 200	1022	-											
	2488.32	246632											
		223	200	2011	202	835	234	033	235	0337	233	2277	240
		0002/	00000	0350	05529	03293	37//41	02200	C777691	0705934	0.0000	08///6	0.8876
										2020			1000
		334155534	3.027	20012030		110980 350071355	52281 53107540	0.00%		35311.3-0	2551255-0	10000	35013975
		in the second					and the second	and the second		post la se	anning .		
		STISSES	55005050	85000	10000000	100000	899840	550100040	5501150207	550112040	350102330	1000000	10000000
			477	200	200	an a	100	100	100	105	265	in l	100
	3224005457513411	3183955700.	31105306030408	179703419570345	10070030117818-	121065553864468	1217130-081319-2.	022400345763841	11230680917309275	101103538592103	1240333047901	1230715216565868	CONSIGNATION OF THE
	22240054575184112	111100200	10000000000000	5,07003(300894)	NOT AN ADDRESS OF	DISAUGRAMAN	1212124240111612	0224024034030.041	DOMESTIC: NO.	THE REAL PROPERTY AND INCOME.	100000000000000000000000000000000000000	CONTRACTOR	CONTRACTOR OF THE
			0.000000	50531592	1000000	\$1773851	000000	61123686			3000100	5,5775-0	10000356
	0												
	-												
المر الم	1022	100											
	246832	2-66322											
	234	100	922	200	101	200	113	034	935	9355	933	2255	222
								12590 m					
Cursor 1	12585 re						125	85.06					
	< F												
Curror 1 Ourson 2	13585 ne 156721 ne	1032.00	12540 ro	12550 ro	12960 rs	12550.05	12580.46	12550 re	1200-10	18:5 %	125527.rs	12533715	

Fig.6 simulation results

Volume 5 Issue V, May 2017 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

DELAY REPORT NR4SD+

NR4SD-

Re Edt Vew Tasis Help	plan (ARKD_poc.ncd - (Table Yaw)	
phe bat vew look hep. phe bat vew look hep.		- 18 - 18
D B C C B	5 I	
Ven	A B C D E F G H I J K L M N Driver OnOrg Perer (M) Used Available Waster (S) Surger Surger Total Universit	
Constant States		
Views	O Pilos muse see the added to VVV utation. Determine the set of the	
Design load 100% open		
Finished Running Vect	ntivity Propagation Science Autivity Propagation 0 mean 1980 par.od: We constraint 'on multiplier JBADE pon.pcf' opened successfully	
Canada Report Warway I	bor	

Power nr4sd+

www.ijraset.com IC Value: 45.98

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

Fig.4 shows the simulation results when implemented on the Xilinx tool with help of model sim.Fig.5 and fig.6 show the RTL view of both NR4SD+ and NR4SD- algorithms.Fig.7 and fig.8 show the delay report of both NR4SD+ and NR4SD- algorithms.Fig.9 and fig.10 show power report of both NR4SD+ and NR4SD- algorithms.

IV. CONCLUSION

We have discussed about the architecture of pre encoded multiplier offline encoding technique .This involves coefficient offline encoding reduces partial products as far as possible. Then, product is achieved using carry save adder ckts leading to further loss in delay. Delay obtained is around 2.14ns

V. ACKNOWLEDGMENT

I am deeply grateful to Professor N.M.Wagdharikar for giving me the opportunity to work on this project under her guidance. I also would like to thank her for academic support throughout the whole course of this work.

My gratitude is extended to my parents for their encouragement and support.

REFERENCES

- Paul, S. Fujita, and M. Okajima, "Rom-based logic (rbl) design: A low-power 16 bit multiplier," IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 2935–2942, Nov. 2009.
- J. Park, K. Muhammad, and K. Roy, "High-performance fir filter design Syst., vol. 11, no. 2, pp. 244–253, Apr. 2003
- [3] K.-S. Chong, B.-H. Gwee, and J. S. Chang, "A 16-channel lowpower nonuniform spaced filter bank core for digital hearing aids," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 9, pp. 853–857, Sep. 2006.
- [4] M. D. Ercegovac and T. Lang, "Multiplication," in Digital Arithmetic. San Francisco: Morgan Kaufmann, 2004, pp. 181–245.
- [5] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, 4th ed. USA: Addison-Wesley Publishing Company, 2010.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)