Pre-Encoded Multipliers Based on Non-Redundant Radix-4 Signed-Digit Encoding

Shrish Managuli ${ }^{1,}$ Prof. N. M. Wagdharikar ${ }^{2}$
${ }^{1,2}$ VLSI \& Embedded systems, M.E. E\&TC Dept. STE's SKNCOE, Vadgaon Pune, India

Abstract

We present architecture of pre-encoded multipliers for Digital Signal Processing applications based on off-line encoding of coefficients. The Non-Redundant radix-4 Signed-Digit (NR4SD) encoding technique employs the digit values $\{-1,0,+1,+2\} o r\{-2,-1,0,+1\} . I t ~ i s$ effective in designing a multiplier with less complex partial products implementation. Extensive experimental analysis proves that the proposed pre-encoded NR4SD multipliers, including the coefficients memory, are more area and power efficient than the conventional Modified Booth scheme.

Keywords: modified booth scheme, Non redundunt radix-4 signed digit encoding (NR4SD), partial products, encoding.

I. INTRODUCTION

In today's modern wireless communication systems the received signal strength greatly varies. Digital multiplication is mostly included in all of today's DSP processors as it is very common operation and frequently occurring function in all algorithms.
Fig. 1 shows The proposed NR4SD encoding scheme uses one of the following sets of digit values: $\{-1,0,+1,+2\}$ or $\{-2,-1,0,+1\}$. In order to cover the dynamic range of the 2 's complement form, all digits of the proposed representation are encoded according to NR4SD except the most significant one that is MB encoded. Using the proposed encoding formula, we pre-encode the standard coefficients and store them into a ROM in a condensed form (i.e., 2 bits per digit). Compared to the pre-encoded MB multiplier in which the encoded coefficients need 3 bits per digit, the proposed NR4SD scheme reduces the memory size. Also, compared to the MB form, which uses five digit values $\{-1,0,+1,+2\}$ or $\{-2,-1,0,+1\}$, the proposed NR4SD encoding uses four digit values.

Fig. 1. A System Architecture of the NR4SD Multipliers.
Thus, the NR4SD-based pre-encoded multipliers include a less complex partial products generation circuit. We explore the efficiency of the aforementioned pre-encoded multipliers taking into account the size of the coefficients'ROM.

II. LITERATURE REVIEW

We have studied various papers to "pre encoded multipliers". In "Rom-based logic (rbl)design: A low-power 16 bit multiplier," by B. Paul, S. Fujita, published in IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 2935-2942, Nov.2009[1] says that The design uses sixteen 4 times 4 ROM-based multiplier blocks followed by carry-save adders and a final carry-select adder (all ROM-based) to obtain the 32 bit output.
In "High-performance fir filter design based on sharing multiplication," by J. Park, K. Muhammad published in IEEE Transaction Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 2, pp. 244-253, Apr.2003[2] says that main idea is to represent the multiplication in FIR filtering operation as a combination of add and shift operations over the common computation results. The

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

common computations are identified by decomposing the coefficients of FIR filters.

III. DESIGN OF PRE-ENCODED MULTIPLIER

In the proposed system we reduce delay by involving efficient NR4SD algorithms along with carry skip adder technique.

A. Non-redundant radix-4 signed digit algorithm

In this section, we propose pre encoded multiplier algorithms.As in modified booth, the partial products are reduced to half. When encoding the 2 's complement number B, digits $b^{N R}{ }_{j}^{-}$take one of four values: $\{-2,-1,0,+1\}$ or $\mathbf{b}^{N R+}{ }_{j} \in\{-1,0,+1,+2\}$ at the NR4SD- or NR4SD+ algorithm, respectively. Only four different values are used and not five as in MB algorithm, which leads to $0 \leq j \leq k-2$. As we need to cover the dynamic range of the 2 's complement form, the most significant digit is MB encoded (i.e., $\mathrm{b}^{M B}{ }_{k-1} \in\{-2,-1,0,+1,+2\}$). The NR4SD - and NR4SD+ encoding algorithms are illustrated in detail in Fig. 2and 3, respectively.

Fig. 2. Block Diagram of the NR4SD- Encoding Scheme at the Digit

Fig. 3.Block Diagram of the NR4SD+ Encoding Scheme at the Digit
NR4SD- Algorithm
Step 1: Consider the initial values $\mathrm{j}=0$ and $\mathrm{c} 0=0$.
Step 2: Calculate the sum $n+2 j$ and carry $c 2 j+1$ of a Half Adder (HA) with inputs b2jand $22 j$ Fig. $2 . c 2 j+1=b 2 j \wedge c 2 j, n+2 j=b 2 j$ $\oplus \mathrm{c} 2 \mathrm{j}$.
Step 3: Calculate the positively signed carry c $2 \mathrm{j}+2(+)$ and the negatively signed sum $\mathrm{n}-2 \mathrm{j}+1(-)$ of a Half Adder* (HA*) with inputs $\mathrm{b} 2 \mathrm{j}+1(+)$ and $\mathrm{c} 2 \mathrm{j}+1(+)($ Fig. 3). The outputs $\mathrm{c} 2 \mathrm{j}+2$ and $\mathrm{n}-2 \mathrm{j}+1$ of the HA* relate to its inputs as follows: $2 \mathrm{c} 2 \mathrm{j}+2-\mathrm{n}-2 \mathrm{j}+1$ $=\mathrm{b} 2 \mathrm{j}+1+\mathrm{c} 2 \mathrm{j}+1$.
Step 4: Calculate the value of the $b^{\mathrm{NR}_{j}-}$ digit.

$$
\begin{equation*}
\mathrm{b}^{\mathrm{NR}-}{ }_{\mathrm{j}}=-2 \mathrm{n}-2 \mathrm{j}+1+\mathrm{n}+2 \mathrm{j} . \tag{1}
\end{equation*}
$$

Step 5: $\mathrm{j}:=\mathrm{j}+1$.
Step 6: If $(\mathrm{j}<\mathrm{k}-1)$, go to Step 2. If $(\mathrm{j}=\mathrm{k}-1)$, encode the most significant digit through the MB algorithm and looking upon the three

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

consecutive bits to be $b_{2 k-1}, b_{2 k-2}$ and $c_{2 k-2}$. If $(j=k)$, stop. Table 1 shows how the NR4SD- digits are formed.

2^{\prime} 's complement			NR4SD $^{-}$form			Digit		NR4SD $^{-}$Encoding	
$b_{2 j+1}$	$b_{2 j}$	$c_{2 j}$	$c_{2 j+2}$	$n_{2 j+1}^{-}$	$n_{2 j}^{+}$	$\mathbf{b}_{j}^{N R-}$	one $_{j}^{+}$	one $_{j}^{-}$	two
0	0	0	0	0	0	$\mathbf{0}$	0	0	0
0	0	1	0	0	1	$\mathbf{+ 1}$	1	0	0
0	1	0	0	0	1	$\mathbf{+ 1}$	1	0	0
0	1	1	1	1	0	$\mathbf{- 2}$	0	0	1
1	0	0	1	1	0	$\mathbf{- 2}$	0	0	1
1	0	1	1	1	1	$\mathbf{- 1}$	0	1	0
1	1	0	1	1	1	$\mathbf{- 1}$	0	1	0
1	1	1	1	0	0	$\mathbf{0}$	0	0	0

Table 1:NR4SD- Encoding

NR4SD+ Algorithm
Step 1: Consider the initial values $\mathrm{j}=0$ and $\mathrm{c} 0=0$.
Step 2: Calculate the carry positively signed $\mathrm{c} 2 \mathrm{j}+1(+)$ and the negatively signed sum $\mathrm{n}-2 \mathrm{j}(-)$ of a HA* with inputs b2j(+) and c 2 j (+) (Fig. 3). The carry $\mathrm{c} 2 \mathrm{j}+1$ and the sum n^{-}
$2 j$ of the HA* relate to its inputs as follows: $2 c 2 j+1-n-2 j=b 2 j+c 2 j$.
The outputs of the HA^{*} are analyzed at gate level in the following equations: $\mathrm{c} 2 \mathrm{j}+1=\mathrm{b} 2 \mathrm{j} \vee \mathrm{c} 2 \mathrm{j}, \mathrm{n}-2 \mathrm{j}=\mathrm{b} 2 \mathrm{j} \oplus \mathrm{c} 2 \mathrm{j}$.
Step 3: Calculate the carry $c 2 j+2$ and the sum $n+2 j+1$ of a HA with inputs $b 2 j+1$ and $c 2 j+1 . c 2 j+2=b 2 j+1 \wedge c 2 j+1, n+2 j+1=b 2 j+1$ © $\mathrm{c} 2 \mathrm{j}+1$.
Step 4: Calculate the value of the $b N R \mathrm{j}+$ digit. $\mathrm{bNR}+\mathrm{j}=2 \mathrm{n}+2 \mathrm{j}+1-\mathrm{n}-2 \mathrm{j}$.
Equation (2) results from the fact that $n+2 j+1$ is positively signed and $n-2 j$ is negatively signed.
Step 5: $\mathrm{j}:=\mathrm{j}+1$.
Step 6: If ($\mathrm{j}<\mathrm{k}-1$), go to Step 2. If ($\mathrm{j}=\mathrm{k}-1$), offline encode MSB digit and considering the three consecutive bits to be $\mathrm{b} 2 \mathrm{k}-1$, $\mathrm{b} 2 \mathrm{k}-2$ and $\mathrm{c} 2 \mathrm{k}-2$. If $(\mathrm{j}=\mathrm{k})$, stop. Table 2 shows how the NR4SD+ digits are formed.

2's complement		NR4SD ${ }^{+}$form		$\begin{gathered} \hline \text { Digit } \\ \hline \mathbf{b}_{j}^{N R+} \\ \hline \end{gathered}$	NR4SD ${ }^{+}$Encoding		
${ }^{b_{2 j+1} b_{2 j}}$	$c_{2 j}$	$c_{2 j+2}$	$n_{2 j+1}^{+} n_{2 j}^{-}$		one ${ }_{j}^{+}$	one ${ }_{j}^{-}$	$t w o_{j}^{+}$
00	0	0	00	0	0	0	0
00	1	0	11	+1	1	0	0
$0 \quad 1$	0	0	11	+1	1	0	0
$0 \quad 1$	1	0	10	+2	0	0	1
10	0	0	10	+2	0	0	1
10	1	1	01	-1	0	1	0
11	0	1	$0 \quad 1$	-1	0	1	0
11	1	1	00	0	0	0	0

Table 2: NR4SD+ Encoding

Fig.4.(a) NR4SD- and (b) NR4SD+ Encoding

Compared to the pre-encoded MB multiplier, where the MB encoding blocks are omitted, the pre-encoded NR4SD multipliers need extra hardware to generate the signals for the NR4SD- and NR4SD+ form, respectively. The Fig. 5 shows the logical diagram of the PPG unit.

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Fig.5.Generation of the ith Bit $\mathrm{p}_{\mathrm{j}, \mathrm{i}}$ of PP_{j}

Fig. 6 simulation results
 Technology (IJRASET)

Power nr4sd+

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Fig. 4 shows the simulation results when implemented on the Xilinx tool with help of model sim.Fig. 5 and fig. 6 show the RTL view of both NR4SD+ and NR4SD- algorithms.Fig. 7 and fig. 8 show the delay report of both NR4SD+ and NR4SD- algorithms.Fig. 9 and fig. 10 show power report of both NR4SD+ and NR4SD- algorithms.

IV. CONCLUSION

We have discussed about the architecture of pre encoded multiplier offline encoding technique .This involves coefficient offline encoding reduces partial products as far as possible. Then, product is achieved using carry save adder ckts leading to further loss in delay. Delay obtained is around 2.14 ns

V. ACKNOWLEDGMENT

I am deeply grateful to Professor N.M.Wagdharikar for giving me the opportunity to work on this project under her guidance. I also would like to thank her for academic support throughout the whole course of this work. My gratitude is extended to my parents for their encouragement and support.

REFERENCES

[1] Paul, S. Fujita, and M. Okajima, "Rom-based logic (rbl) design: A low-power 16 bit multiplier," IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 2935-2942, Nov. 2009.
[2] J. Park, K. Muhammad, and K. Roy, "High-performance fir filter design based on sharing multiplication," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 2, pp. 244-253, Apr. 2003
[3] K.-S. Chong, B.-H. Gwee, and J. S. Chang, "A 16-channel lowpower nonuniform spaced filter bank core for digital hearing aids," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 9, pp. 853-857, Sep. 2006.
[4] M. D. Ercegovac and T. Lang, "Multiplication," in Digital Arithmetic. San Francisco: Morgan Kaufmann, 2004, pp. 181-245.
[5] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, 4th ed. USA: Addison-Wesley Publishing Company, 2010.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

