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Abstract: The basic finite automata model has been extended over the years with different acceptancemodes (nondeterminism, 
alternation), new or improved devices (two-way heads, Pebbles, nested pebbles) and with cooperation. None of these additions 
permits recognitionof non-regular languages. The purpose of this work is to investigate a new kindof automata which is inspired 
by an extension of 2DPDAs. Mogensen enhanced thesewith what he called a WORM (write once, read many) track and showed 
that Cook’s Linear-time simulation result still holds. Here we trade the pushdown store for nondeterminismor a pebble and show 
that the languages of these new types of finite automataare still regular. The conjunction of alternation or of nondeterminism 
and a pebblepermits the recognition of non-regular languages. We have given examples of languages thatare easy to recognize 
and of operations that are easy to perform using these WORM tracks under nondeterminism. While somewhat similar to Henie
machines, our modelsdo not require an explicit time bound on their computations.
Keywords: finite automata, deterministic automata, non-deterministic automata.

I. INTRODUCTION

Two way deterministic automata(2DPDAs) have played an 
important role in development of formal language theory. it is 
awell-known fact that the class of language recognizible by 
multihued(or single-head with polynomailpadding) 2DPDA is 
strongly equal to pin in the sense thta the polynimial exponent is 
closely related to the number of heads. By cooks results, a k-
head 2DPDA can be simulated on a random-access machine 
with unit cost in time )(mk) where m is the lenght of the unit. 
this has inspired some interesting algorithms such as the Knuth-
Morrsi-Pratt[12] algorithm or a liner time algorithm for 
recognizing " PALSTAR". The question of an adequate notion 
of recognizability of graph properties has recently attracted 
much attention, and many competing approaches have been 
developed.
The starting point in this research is the notion of 
(nondeterministic or deterministic) _niTEautomaton over words. 
In a _rst step towards more general inputs than words,_nite tree 
automata were introduced by Doner and Thatcher and Wright.It 
was shown that many characterizations of recognizable word 
languages, namelyin terms of regular expressions, 
recognizability in _nite algebras, and de_nability inMonadic 
second-order logic, are all naturally preserved when passing 
from words to trees. WORM tracks thus serve as an auxiliary 

storage device permitting, for instance, lexical tokenization in 
linear time [17], as opposed to the quadratic worst-case time 
ofcurrent lexical scanners. WORM tracks are also useful for 
recognizing some languagesmore easily, such as {uuRvvR | u, v 
2 {a, b}_} (PALSQUARE). However it is still anopen question 
whether or not WORM-2DPDAs recognize more languages than 
2DPDAs.It seems natural to investigate the simpler case of a 
standard finite automatonprovided with a WORM track. This 
gives a two-way deterministic automaton witha WORM track (a 
WORM-2DFA) which is easily shown to accept regular 
languagesonly. But if one introduces nondeterminism or a 
pebble (thus obtaining what we callWORM-2NFAs and P-
WORM-2DFAs), the regularity of the recognized languages 
isno longer trivial, and is the main result of this article.

A DFA represents a finite state machine that recognizes a RE. 
For example, the following DFA:

Fig .1 Graph of deterministic finite automata
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Recognizes (abc+) +. A finite automaton consists of a finite set of 
states, a set of transitions (moves), one start state, and a set of 
final states (accepting states). In addition, a DFA has a unique 
transition for every state-character combination. For example, 
the previous figure has 4 states, state 1 is the start state, and state 
4 is the only final state.

A DFA accepts a string if starting from the start state and 
moving from state to state, each time following the arrow that 
corresponds the current input character, it reaches a final state 
when the entire input string is consumed. Otherwise, it rejects 
thestring.

A deterministic finite automaton M is a 5

δ, q0, F), consisting of

 a finite set of states (Q)

 a finite set of input symbols called the alphabet

 a transition function (δ : Q × Σ → Q)

 a startstate (q0 ∈ Q)

 a set of acceptstates (F ⊆ Q)

Let w = a1a2 ... an be a string over the alphabet Σ. The 

automaton M accepts the string w if a sequence of states,

..., rn, exists in Q with the following conditions:

1. r0 = q0

2. ri+1 = δ(ri, ai+1), for i = 0, ..., n−1

3. rn ∈ F.

In words, the first condition says that the machine starts in the 

start state q0. The second condition says that given each 

character of string w, the machine will transition from state to 

state according to the transition function δ. The last condition 

says that the machine accepts w if the last input of

machine to halt in one of the accepting states. Otherwise, it is 
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final states (accepting states). In addition, a DFA has a unique 

character combination. For example, 
vious figure has 4 states, state 1 is the start state, and state 

A DFA accepts a string if starting from the start state and 
moving from state to state, each time following the arrow that 

it reaches a final state 
when the entire input string is consumed. Otherwise, it rejects 

is a 5-tuple, (Q, Σ, 

alphabet (Σ)

be a string over the alphabet Σ. The 

if a sequence of states, r0,r1, 

with the following conditions:

condition says that the machine starts in the 

. The second condition says that given each 

, the machine will transition from state to 

state according to the transition function δ. The last condition 

if the last input of w causes the 

machine to halt in one of the accepting states. Otherwise, it is 

said that the automaton rejects

strings M accepts is the language

language is denoted by L (M).A deterministic finite automaton 

without accept states and without a starting state is known as 

a transition system or semi automaton

EXAMPLE:

The following example is of a DFA

which requires that the input contains an even number of 0s.

The statediagram for M

M = (Q, Σ, δ, q0, F) where

 Q = {S1, S2},

 Σ = {0, 1},

 q0 = S1,

 F = {S1}, and

 δ is defined by the following statetransitiontable

0 1

S1 S2 S1

S2 S1 S2

The state S1 represents that there has been an even number 

of 0s in the input so far, while
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the string. The set of 

language recognized by M and this 

.A deterministic finite automaton 

without accept states and without a starting state is known as 

semi automaton

The following example is of a DFA M, with a binary alphabet, 

which requires that the input contains an even number of 0s.

statetransitiontable:

represents that there has been an even number 

S2 signifies an odd number. 
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A 1 in the input does not change the state of the automaton. 

When the input ends, the state will show whether the input 

contained an even number of 0s or not. If the input did 

contain an even number of 0s, M will finish in stateS1, an 

accepting state, so the input string will be accepted.

The language recognized by M is the regularlanguage given 

by the regularexpression 1*( 0 (1*) 0 (1*) )*, where "*" is 

the Kleenestar, e.g., 1* denotes any non-negative number 

(possibly zero) of symbols "1".

II. NON DETERMINISTIC FINITE AUTOMATA

A nondeterministic finite automaton (NFA), or 

nondeterministic finite state machine, is a finite state 

machine that (1) does not require input symbols for state 

transitions and is capable of transitioning to zero or two or more 

states for a given start state and input symbol. This distinguishes 

it from a deterministic finite automaton (DFA), in which all 

transitions are uniquely determined and in which an input 

symbol is required for all state transitions. Although NFA and 

DFA have distinct definitions, all NFAs can be translated to 

equivalent DFAs using the subset construction algorithm, i.e., 

constructed DFAs and their corresponding NFAs recognize the 

same formal language. Like DFAs, NFAs only recognize regular 

languages. NFAs were introduced in 1959 by Michael O. 

Rabin and Dana Scott, who also showed their equivalence to 

DFAs.

III. WORM-2NFAs

WORM-2NFAs are somewhat similar to nondeterministic 
Hennie machines. These aresingle-head Turing machines whose 
heads do not leave the input portion of their tape, and which 
have the bounded visit property, that is, there is a constant c 
such thatthe machine never visits any given position more than c 

times [2]. These machinesrecognize regular languages only. In 
Hennie’s original paper [11] it was shown thatdeterministic 
linear-time Turing machines have the bounded visit property. It 
shouldbe noted that there exists linear-time nondeterministic 
Turing machines recognizing on-regular, NP-complete 
languages2 [13]. Furthermore, the linearity of running timeis a 
non-trivial and thus UNdecidable property of Turing machines, 
making the class

An NFA is represented formally by a 5-tuple, (Q, Σ, Δ, q0, F), 

consisting of

 a finite set of states Q

 a finite set of inputsymbols Σ

 a transition function Q × Σ → P(Q).

 an initial (or start) state q0 ∈ Q

 a set of states F distinguished 

as accepting (or final) states F ⊆ Q.

Here, P(Q) denotes the powerset of Q. Let w = a1a2 ... an be a 

word over the alphabet Σ. The automaton M accepts the 

word w if a sequence of states, r0,r1, ..., rn, exists in Q with the 

following conditions:

1. r0 = q0

2. ri+1 ∈ Δ(ri, ai+1), for i = 0, ..., n−1

3. rn ∈ F.

In words, the first condition says that the machine starts in the 

start state q0. The second condition says that given each 

character of string w, the machine will transition from state to 

state according to the transition function Δ. The last condition 

says that the machine accepts w if the last input of w causes the 

machine to halt in one of the accepting states. Otherwise, it is 

said that the automaton rejects the string. The set of 
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strings M accepts is the language recognized

language is denoted by L (M).

We can also defineL(M) in terms of Δ*: Q × 

that:

1. Δ*(r, ε)= {r} where ε is the empty string, and

2. If x ∈ Σ*, a ∈ Σ, and Δ*(r, x)={r1

Δ*(r, xa)= Δ(r1, a)∪...∪Δ(rk, a).

Now L(M) = {w | Δ*(q0, w) ∩ F ≠ ∅}.

Note that there is a single initial state, which is not necessary. 

Sometimes, NFAs are defined with a set of initial states. There 

is an easy construction that translates a NFA with multiple 

initial states to a NFA with single initial state, which provides a 

convenient notation.

EXAMPLE:

Let M be a NFA, with a binary alphabet, that determines if the 

input ends with a 1.

In formal notation, let M = ({p, q}, {0, 1}, Δ, p

transition function Δ can be defined by this state transition table.

0 1

p {p} {p,q}

q ∅ ∅
Note that Δ(p,1) has more than one state therefore

nondeterministic. The language of M can be described by the 

regular language given by the regular expression
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recognized by M and this 

× Σ* → P(Q) such 

empty string, and

1, r2,..., rk} then 

, which is not necessary. 

initial states. There 

that translates a NFA with multiple 

initial states to a NFA with single initial state, which provides a 

be a NFA, with a binary alphabet, that determines if the 

p, {q}) where the 

s state transition table.

,1) has more than one state therefore M is 

can be described by the 

he regular expression (0|1)*1.

Fig. 3 the state diagram of M

IV. CONCLUSION

The ability of WORM-2NFAs to
values linear in the size ofthe input throughout the computation 
appears as ability out of the reach of 2AFA,pebble
other similar models. Also, compared to nondeterministic 
Henniemachines, WORM-2NFAs do not have a finite 
the number of times they canvisit a given square. We therefore 
conjecture that 2AFAs as well as nondeterministicHennie 
machines cannot solve SAT with a polynomial number of states. 
We hopethat these results will shed some light on the relative 
power of WORM-2DPDAs vS2DPDAs.The effect of WORM 
cells on the languages of other kinds of finite 
computingDevices, such as 2DFAs with nested pebbles, 2DFAs 
or 2NFAs with monotonic outputtapes and tree
automata remains to Be Explored.
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