

2 IX September 2014

www.ijraset.com Vol. 2 IssueIX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 21

Non Determinism of Finite Automata
Akshit Chauhan1, Deepak Kumar2 , Deepak Chandel3,

1,2,3CSE Department
DCE Gurgaon

Abstract: The basic finite automata model has been extended over the years with different acceptancemodes (nondeterminism,
alternation), new or improved devices (two-way heads, Pebbles, nested pebbles) and with cooperation. None of these additions
permits recognitionof non-regular languages. The purpose of this work is to investigate a new kindof automata which is inspired
by an extension of 2DPDAs. Mogensen enhanced thesewith what he called a WORM (write once, read many) track and showed
that Cook’s Linear-time simulation result still holds. Here we trade the pushdown store for nondeterminismor a pebble and show
that the languages of these new types of finite automataare still regular. The conjunction of alternation or of nondeterminism
and a pebblepermits the recognition of non-regular languages. We have given examples of languages thatare easy to recognize
and of operations that are easy to perform using these WORM tracks under nondeterminism. While somewhat similar to Henie
machines, our modelsdo not require an explicit time bound on their computations.
Keywords: finite automata, deterministic automata, non-deterministic automata.

I. INTRODUCTION

Two way deterministic automata(2DPDAs) have played an
important role in development of formal language theory. it is
awell-known fact that the class of language recognizible by
multihued(or single-head with polynomailpadding) 2DPDA is
strongly equal to pin in the sense thta the polynimial exponent is
closely related to the number of heads. By cooks results, a k-
head 2DPDA can be simulated on a random-access machine
with unit cost in time)(mk) where m is the lenght of the unit.
this has inspired some interesting algorithms such as the Knuth-
Morrsi-Pratt[12] algorithm or a liner time algorithm for
recognizing " PALSTAR". The question of an adequate notion
of recognizability of graph properties has recently attracted
much attention, and many competing approaches have been
developed.
The starting point in this research is the notion of
(nondeterministic or deterministic) _niTEautomaton over words.
In a _rst step towards more general inputs than words,_nite tree
automata were introduced by Doner and Thatcher and Wright.It
was shown that many characterizations of recognizable word
languages, namelyin terms of regular expressions,
recognizability in _nite algebras, and de_nability inMonadic
second-order logic, are all naturally preserved when passing
from words to trees. WORM tracks thus serve as an auxiliary

storage device permitting, for instance, lexical tokenization in
linear time [17], as opposed to the quadratic worst-case time
ofcurrent lexical scanners. WORM tracks are also useful for
recognizing some languagesmore easily, such as {uuRvvR | u, v
2 {a, b}_} (PALSQUARE). However it is still anopen question
whether or not WORM-2DPDAs recognize more languages than
2DPDAs.It seems natural to investigate the simpler case of a
standard finite automatonprovided with a WORM track. This
gives a two-way deterministic automaton witha WORM track (a
WORM-2DFA) which is easily shown to accept regular
languagesonly. But if one introduces nondeterminism or a
pebble (thus obtaining what we callWORM-2NFAs and P-
WORM-2DFAs), the regularity of the recognized languages
isno longer trivial, and is the main result of this article.

A DFA represents a finite state machine that recognizes a RE.
For example, the following DFA:

Fig .1 Graph of deterministic finite automata

www.ijraset.com

I N T E R N A T I O N A L J O U R N A
E N G I N E E R

Recognizes (abc+) +. A finite automaton consists of a finite set of
states, a set of transitions (moves), one start state, and a set of
final states (accepting states). In addition, a DFA has a unique
transition for every state-character combination. For example,
the previous figure has 4 states, state 1 is the start state, and state
4 is the only final state.

A DFA accepts a string if starting from the start state and
moving from state to state, each time following the arrow that
corresponds the current input character, it reaches a final state
when the entire input string is consumed. Otherwise, it rejects
thestring.

A deterministic finite automaton M is a 5

δ, q0, F), consisting of

 a finite set of states (Q)

 a finite set of input symbols called the alphabet

 a transition function (δ : Q × Σ → Q)

 a startstate (q0 ∈ Q)

 a set of acceptstates (F ⊆ Q)

Let w = a1a2 ... an be a string over the alphabet Σ. The

automaton M accepts the string w if a sequence of states,

..., rn, exists in Q with the following conditions:

1. r0 = q0

2. ri+1 = δ(ri, ai+1), for i = 0, ..., n−1

3. rn ∈ F.

In words, the first condition says that the machine starts in the

start state q0. The second condition says that given each

character of string w, the machine will transition from state to

state according to the transition function δ. The last condition

says that the machine accepts w if the last input of

machine to halt in one of the accepting states. Otherwise, it is

Vol. 2 IssueIX

ISSN: 2321-9

A L F O R R E S E A R C H I N A P P L I E D
R I N G T E C H N O L O G Y (I J R A S E T)

Page 22

. A finite automaton consists of a finite set of
states, a set of transitions (moves), one start state, and a set of
final states (accepting states). In addition, a DFA has a unique

character combination. For example,
vious figure has 4 states, state 1 is the start state, and state

A DFA accepts a string if starting from the start state and
moving from state to state, each time following the arrow that

it reaches a final state
when the entire input string is consumed. Otherwise, it rejects

is a 5-tuple, (Q, Σ,

alphabet (Σ)

be a string over the alphabet Σ. The

if a sequence of states, r0,r1,

with the following conditions:

condition says that the machine starts in the

. The second condition says that given each

, the machine will transition from state to

state according to the transition function δ. The last condition

if the last input of w causes the

machine to halt in one of the accepting states. Otherwise, it is

said that the automaton rejects

strings M accepts is the language

language is denoted by L (M).A deterministic finite automaton

without accept states and without a starting state is known as

a transition system or semi automaton

EXAMPLE:

The following example is of a DFA

which requires that the input contains an even number of 0s.

The statediagram for M

M = (Q, Σ, δ, q0, F) where

 Q = {S1, S2},

 Σ = {0, 1},

 q0 = S1,

 F = {S1}, and

 δ is defined by the following statetransitiontable

0 1

S1 S2 S1

S2 S1 S2

The state S1 represents that there has been an even number

of 0s in the input so far, while

X, September 2014

9653

D S C I E N C E AN D

the string. The set of

language recognized by M and this

.A deterministic finite automaton

without accept states and without a starting state is known as

semi automaton

The following example is of a DFA M, with a binary alphabet,

which requires that the input contains an even number of 0s.

statetransitiontable:

represents that there has been an even number

S2 signifies an odd number.

www.ijraset.com Vol. 2 IssueIX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 23

A 1 in the input does not change the state of the automaton.

When the input ends, the state will show whether the input

contained an even number of 0s or not. If the input did

contain an even number of 0s, M will finish in stateS1, an

accepting state, so the input string will be accepted.

The language recognized by M is the regularlanguage given

by the regularexpression 1*(0 (1*) 0 (1*))*, where "*" is

the Kleenestar, e.g., 1* denotes any non-negative number

(possibly zero) of symbols "1".

II. NON DETERMINISTIC FINITE AUTOMATA

A nondeterministic finite automaton (NFA), or

nondeterministic finite state machine, is a finite state

machine that (1) does not require input symbols for state

transitions and is capable of transitioning to zero or two or more

states for a given start state and input symbol. This distinguishes

it from a deterministic finite automaton (DFA), in which all

transitions are uniquely determined and in which an input

symbol is required for all state transitions. Although NFA and

DFA have distinct definitions, all NFAs can be translated to

equivalent DFAs using the subset construction algorithm, i.e.,

constructed DFAs and their corresponding NFAs recognize the

same formal language. Like DFAs, NFAs only recognize regular

languages. NFAs were introduced in 1959 by Michael O.

Rabin and Dana Scott, who also showed their equivalence to

DFAs.

III. WORM-2NFAs

WORM-2NFAs are somewhat similar to nondeterministic
Hennie machines. These aresingle-head Turing machines whose
heads do not leave the input portion of their tape, and which
have the bounded visit property, that is, there is a constant c
such thatthe machine never visits any given position more than c

times [2]. These machinesrecognize regular languages only. In
Hennie’s original paper [11] it was shown thatdeterministic
linear-time Turing machines have the bounded visit property. It
shouldbe noted that there exists linear-time nondeterministic
Turing machines recognizing on-regular, NP-complete
languages2 [13]. Furthermore, the linearity of running timeis a
non-trivial and thus UNdecidable property of Turing machines,
making the class

An NFA is represented formally by a 5-tuple, (Q, Σ, Δ, q0, F),

consisting of

 a finite set of states Q

 a finite set of inputsymbols Σ

 a transition function Q × Σ → P(Q).

 an initial (or start) state q0 ∈ Q

 a set of states F distinguished

as accepting (or final) states F ⊆ Q.

Here, P(Q) denotes the powerset of Q. Let w = a1a2 ... an be a

word over the alphabet Σ. The automaton M accepts the

word w if a sequence of states, r0,r1, ..., rn, exists in Q with the

following conditions:

1. r0 = q0

2. ri+1 ∈ Δ(ri, ai+1), for i = 0, ..., n−1

3. rn ∈ F.

In words, the first condition says that the machine starts in the

start state q0. The second condition says that given each

character of string w, the machine will transition from state to

state according to the transition function Δ. The last condition

says that the machine accepts w if the last input of w causes the

machine to halt in one of the accepting states. Otherwise, it is

said that the automaton rejects the string. The set of

www.ijraset.com

I N T E R N A T I O N A L J O U R N A
E N G I N E E R

strings M accepts is the language recognized

language is denoted by L (M).

We can also defineL(M) in terms of Δ*: Q ×

that:

1. Δ*(r, ε)= {r} where ε is the empty string, and

2. If x ∈ Σ*, a ∈ Σ, and Δ*(r, x)={r1

Δ*(r, xa)= Δ(r1, a)∪...∪Δ(rk, a).

Now L(M) = {w | Δ*(q0, w) ∩ F ≠ ∅}.

Note that there is a single initial state, which is not necessary.

Sometimes, NFAs are defined with a set of initial states. There

is an easy construction that translates a NFA with multiple

initial states to a NFA with single initial state, which provides a

convenient notation.

EXAMPLE:

Let M be a NFA, with a binary alphabet, that determines if the

input ends with a 1.

In formal notation, let M = ({p, q}, {0, 1}, Δ, p

transition function Δ can be defined by this state transition table.

0 1

p {p} {p,q}

q ∅ ∅
Note that Δ(p,1) has more than one state therefore

nondeterministic. The language of M can be described by the

regular language given by the regular expression

Vol. 2 IssueIX

ISSN: 2321-9

A L F O R R E S E A R C H I N A P P L I E D
R I N G T E C H N O L O G Y (I J R A S E T)

Page 24

recognized by M and this

× Σ* → P(Q) such

empty string, and

1, r2,..., rk} then

, which is not necessary.

initial states. There

that translates a NFA with multiple

initial states to a NFA with single initial state, which provides a

be a NFA, with a binary alphabet, that determines if the

p, {q}) where the

s state transition table.

,1) has more than one state therefore M is

can be described by the

he regular expression (0|1)*1.

Fig. 3 the state diagram of M

IV. CONCLUSION

The ability of WORM-2NFAs to
values linear in the size ofthe input throughout the computation
appears as ability out of the reach of 2AFA,pebble
other similar models. Also, compared to nondeterministic
Henniemachines, WORM-2NFAs do not have a finite
the number of times they canvisit a given square. We therefore
conjecture that 2AFAs as well as nondeterministicHennie
machines cannot solve SAT with a polynomial number of states.
We hopethat these results will shed some light on the relative
power of WORM-2DPDAs vS2DPDAs.The effect of WORM
cells on the languages of other kinds of finite
computingDevices, such as 2DFAs with nested pebbles, 2DFAs
or 2NFAs with monotonic outputtapes and tree
automata remains to Be Explored.

REFERENCES

 M. O. Rabin and D. Scott, "Finite Automata and their

Decision Problems", IBM Journal of Research and

Development, 3:2 (1959) pp. 115

 Michael Sipser, Introduction to the Theory of Computation

PWS, Boston. 1997. ISBN 0

1.2: Nondeterminism, pp.47–63.)

 John E. Hopcroft and Jeffrey D. Ullman,

Automata Theory, Languages, and Computation

X, September 2014

9653

D S C I E N C E AN D

CONCLUSION

hold a number of guessed
values linear in the size ofthe input throughout the computation
appears as ability out of the reach of 2AFA,pebble-2AFA and
other similar models. Also, compared to nondeterministic

2NFAs do not have a finite bound on
the number of times they canvisit a given square. We therefore
conjecture that 2AFAs as well as nondeterministicHennie
machines cannot solve SAT with a polynomial number of states.
We hopethat these results will shed some light on the relative

2DPDAs vS2DPDAs.The effect of WORM
cells on the languages of other kinds of finite
computingDevices, such as 2DFAs with nested pebbles, 2DFAs
or 2NFAs with monotonic outputtapes and tree-walking

REFERENCES

Rabin and D. Scott, "Finite Automata and their

IBM Journal of Research and

115–125.

Introduction to the Theory of Computation.

ISBN 0-534-94728-X. (see section

63.)

John E. Hopcroft and Jeffrey D. Ullman, Introduction to

Automata Theory, Languages, and Computation, Addison-

www.ijraset.com Vol. 2 IssueIX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 25

Wesley Publishing, Reading Massachusetts, 1979. ISBN 0-

201-02988-X.

 C. Choffrut, B. Durak, Collage of two-dimensional words.

Theoret. Comp.Sci 340 (2005) 1, 364–380.

 J.-C. Birget, Two-way automata and length-preserving

homomorphisms. Mathematical Systems Theory 29 (1996)

3, 191–226.

