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Abstract:  Big Data is a term for information sets that are huge and complicated in which the traditional data processing 
applications are not capable to manage with them. MapReduce is a programming model for processing and producing these 
huge data sets. Programs written in this are naturally parallelized and runs on a huge cluster of commodity machines. 
Mapreduce executes fault tolerance at the task level, so when a task failure happens the whole task will be re-executed once 
more. In the case of long time running subtasks and then a single task failure is very large and cannot be avoided. The effect of 
failures can be considerable in terms of performance. As a result fault tolerance is significant for MapReduce. This Paper 
summarizes the checkpointing methods for fault tolerance on MapReduce. 
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I. INTRODUCTION 
Big data [12] is an evolving term that describes any voluminous amount of structured, semistrutured and unstructured data that is so 
large and difficult to process using traditional database and software techniques. Big data is characterized by the extreme volume of 
data, the wide variety of data types and the velocity at which the data must be processed. Although big data doesn’t equate to any 
specific volume of data, often used to describe terabytes, petabytes and even hexabytes of data captured over time. In most 
enterprise scenarios the volume of data is too big or it moves too fast or it exceeds current processing capacity. Data is processed 
with advanced tools to reveal meaningful information. 
MapReduce [1] is a programming model and an associated implementation for processing and generating large data sets. Users 
specify a map function that processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce function that 
merges all intermediate values associated with the same intermediate key. MapReduce runs on a large cluster of commodity 
machines and is highly scalable. The computation takes a set of input key/value pairs, and produces a set of output key/value pairs. 
The user of the MapReduce library expresses the computation as two functions: Map and Reduce. Map, written by the user, takes an 
input pair and produces a set of intermediate key/value pairs. The MapReduce library groups together all intermediate values 
associated with the same intermediate key and passes them to the Reduce function. The Reduce function, also written by the user, 
accepts an intermediate key and a set of values for that key. It merges together these values to form a possibly smaller set of values. 
Typically just zero or one output value is produced per Reduce invocation. The intermediate values are supplied to the user's reduce 
function via an iterator. This allows to handle lists of values that are too large to fit in memory. 
There are three fundamental types of faults [13] in parallel systems, such as byzantine faults, fail-stop faults and fail-shutter faults. 
MapReduce can allow the latter two kinds of faults. Byzantine fault model can characterized as a random system failures and 
malicious attacks by a hacker. Fail-stop faults are generally characterized as master failures, worker failures and task failures. 
MapReduce acquired a centralized architecture, with one node called the master and others are called workers. The master is used 
for arranging tasks and workers are used to run map and reduce tasks. A MapReduce cluster contains only one master, which makes 
it easy to set up a standby master to permit master failures. MapReduce reschedules failed tasks from the beginning without 
bothering the others for task and worker failures. Fail-stutter faults will appear as slow running tasks. MapReduce dynamically 
detects slow tasks and provide speculative attempts and executing  the same input data. 

II. CHECKPOINTING METHODS 
A. BFT MapReduce 
J. Dean et.al [2] proposed a byzantine fault-tolerant (BFT) MapReduce runtime system. It tolerates the faults that corrupt the results 
of computation of tasks such as DRAM and CPU errors/faults. It uses a MapReduce algorithm and prototype that tolerate these 
faults.  The fault tolerance methods of current MapReduce implementations, namely Hadoop cannot deal with accidental Byzantine 
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faults. They cannot be identified using checksums and often do not crash the task they affect, so they can silently corrupt the result 
of a task . This system is composed by a set of distributed processes. The clients that request the execution of jobs composed by map 
and reduce tasks, the JobTracker that manages the execution of a job, a set of Task-Trackers that execute tasks, the NameNode that 
manages access to data stored in HDFS, and a set of DataNodes where HDFS stores file blocks. If a process is correct if it follows 
the algorithm, otherwise it is faulty. 

B. Stream processing 
J.-H.Hwang et.al [3] proposed a method called stream processing in which a query is represented in the form of a directed acyclic 
graph of operators that describes how to transform data. Some stream operators are directly borrowed from relational algebra and 
others are adapted to operate over continuous data streams. In a distributed stream processing system, developing more servers 
increases the system performance. However, it increases the risk of failure. This paper proposed a checkpoint-based collaborative, 
self-configuring high availability (HA) solution which addresses the needs of distributed stream processing through a parallel fine-
grained backup and yields shorter recovery times. Stream-oriented HA solutions differ in how the backup servers operate. The main 
idea is to divide the query which is located at a given server into units. Each unit can be checkpointed independently, thereby 
decreases the overall recovery time. 

C. Self-Adaptive MapReduce (SAMR) 
Q. Chen et.al [4] proposed a technique that evaluates the improvement of tasks dynamically and modifies it to the continuously 
varying environment automatically. When a new job is committed, SAMR splits the job into several fine-grained map and reduce 
tasks and put them to a series of nodes. It reads historical information that is saved on every node and updated after every execution. 
SAMR adjusts the time weight of each stage of map and reduce tasks according to the historical information respectively. Thus, it 
gets the progress of each task accurately and detects which tasks need backup tasks. SAMR categorize slow nodes into map slow 
nodes and reduce slow nodes further. It gets the final results of the fine-grained tasks when either slow tasks or backup tasks finish 
first. SAMR significantly improves MapReduce in terms of saving the execution time as well as system resources. 

D. Longest Approximate Time to End 
M. Zaharia et.al [5] proposed a simple, robust algorithm called Longest Approximate Time to End (LATE) to speculatively execute 
tasks that break the response time. LATE performs better than Hadoop’s default speculation algorithm in real workloads on 
Amazon’s Elastic Compute Cloud (EC2). The MapReduce model by Google is attractive for parallel processing arbitrary data. 
MapReduce will breaks the whole task into small sub tasks that runs in parallel and  can moves to  large clusters of commodity 
clusters. Hadoop’s scheduler starts executing speculative tasks based on each tasks progress to the average progress. The main goal 
of speculative execution is to minimize the job’s response time. Response time is very important for job’s such that when a user 
wants an answer such as queries on data for monitoring and debugging. Hadoop’s scheduler will cause degradation in performance 
in heterogenous environments. 

E. RAFT 
J.-A. Quiane-Ruiz et.al [6] proposed a family of Recovery Algorithms for Fast-Tracking (RAFT) MapReduce. Fault-tolerance is an 
important aspect in large clusters because the probability of node failures increases with the growing number of computing nodes. 
MapReduce has several performance issues in the presence of task and worker failures. A query metadata checkpointing algorithm 
(RAFT-QMC) that deals with several worker failures. To achieve this, mappers produce query metadata checkpoints of task 
progress calculation which contains all offsets of input key-value pairs that produce an intermediate result, and the identifier of the 
reducers that will consume such results. As a result, re-scheduled mappers only recomputed intermediate results required by local 
reducers. This paper also proposed a scheduling strategy that delegates the responsibility to workers for rescheduling tasks failed 
due to task failures, and preassigns reducers to workers in order to allow mappers to push intermediate data to reducers. 

F. Adaptive Optimization 
R.Vernica et.al [7] proposed a number of adaptive optimization techniques for the MapReduce framework that improve its 
performance and especially performance stability. That is, these adaptive techniques can bring significant performance 
improvements and also it make use of “Situation-Aware Mappers” that are able to cooperatively make global optimization decision. 



www.ijraset.com                                                                                                                      Volume 5 Issue VI, June 2017 
IC Value: 45.98                                                                                                                       ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET: All Rights are Reserved 
1074 

It describes a set of techniques for making the MapReduce framework more adaptive to the input data and runtime conditions. These 
techniques affect different parts of a MapReduce job and all of them are implemented inside the map tasks. The techniques 
mentioned in this paper are described as follows: (a) Adaptive Mappers dynamically “stitches” a set of input splits into a single 
virtual split assigned to a mapper, thus changing the checkpoint interval as the mapper is running. (b) Adaptive Combiners improves 
he hash-based aggregation for combining map outputs with frequent keys, (c) Adaptive Sampling and Partitioning piggybacks on 
the main job, dynamically decides when to stop sampling, based on a global sampling condition and dynamically decides the 
partitioning function while the job is running.  

G. Passive Replication 
Q. Zheng [8] proposed a passive replication on top of re-execution to improve the MapReduce fault tolerance in the cloud. Allocates 
a few backups besides the running copy for each map task. Backup is only executed when its corresponding task fails. The value of 
these backups is decided by the Mapreduce users or by cloud providers based on failure information. Thus the failed task is run by 
one of its backups and this fail over can reduce completion time. Proposed methods to schedule backups, move backup instances, 
and select backups upon failure for fast recovery.  It reduces the latency for individual high-priority user jobs. 

H. Chained Declustering 
C. Yang et.al [9] proposed MapReduce Fault tolerance in a shared nothing database. Osprey, a middleware implementation of 
MapReduce fault tolerance for a SQL database.  Osprey gives fault tolerance and load balancing based on some key ideas: (a) 
dividing the queries into subqueries that can be executed in parallel, (b) Dynamic scheduling of the execution of those subqueries on 
the workers, (c) Re-execution of straggler subqueries. These strategies are adapted from MapReduce, but the Osprey will differ from 
it because it uses SQL based database systems. Here the data will appear in the form of tables and then the data is partitioned across 
database nodes by using a technique called chained declustering. A coordinator machine divides the Query into several subqueries. 
After finishing the current one, new subquery are assigned to the worker nodes. It shows that the system shows good load balancing 
and fault tolerance properties. 

I. MRPerf 
G. Wang et.al [10] proposed an efficient Hadoop simulator called MRPerf, which focuses on accurate execution of detailed 
MapReduce setups, and validates it using measurements on actual Hadoop setups and used to study the impacts of different network 
topologies on the performance of Hadoop application.adopt a simulation method to understand the overall performance of 
MapReduce setups. The input configuration in MRPref  is determined in a set of files and processed by different processing 
modules. There are two assumptions in MRPref, a node’s resources and it does not model the OS-level asynchronous prefetching. 
Concerned with the design of cluster, parameters in run time, multi-tenancy and application performance. The goal of MRPerf is to 
provide fine-grained simulation of MapReduce setups at sub-phase level. 

J. CPR Technique 
G. Bronevetsky et.al [11] proposed a regularly utilized approach called checkpoint and restart (CPR). Here the state of the 
calculation will be saved occasionally on the disk. The point when a disappointment occurs, those calculation is restarted from the 
most recent saved state. It is the obligation of the programmer to instrument flying provisions for CPR. This System need two 
components: (i) a pre-compiler for Source-to-source change about applications, and (ii) a runtime framework that executes a 
protocol for facilitating CPR around the threads of the parallel requisition. One of the benefits about this methodology is the 
capacity to tolerate faults inside the application. In this way applications get to be self-checkpointing and Self-restarting on any 
platform. 

III.  CONCLUSIONS 
MapReduce is a programming model and an associated implementation for processing and generating large data sets . There are 
chances for fault in execution of tasks. The checkpoint strategy is the effective method to overcome this challenge. This paper 
summarizes various checkpointing strategies for fault tolerance on MapReduce. By using this Checkpoint Strategy, a retrying task 
doesnot start from the scratch so that it saves time. 
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